Answer: If a reaction produces a gas such as oxygen or carbon dioxide, there are two ways to measure the reaction rate: using a gas syringe to measure the gas produced, or calculating the reduction in the mass of the reaction solution.
Explanation:
https://courses.lumenlearning.com/introchem/chapter/measuring-reaction-rates/#:~:text=If%20a%20reaction%20produces%20a,mass%20of%20the%20reaction%20solution.
This is the site I got it from. I hope this helps.
Answer:
See explanation
Explanation:
Full molecular equation;
2NH3(aq) + AgNO3(aq) -------> [Ag(NH3)2]NO3(aq)
Full ionic equation
2NH3(aq) + Ag^+(aq) + NO3^-(aq) --------> [Ag(NH3)2]^+(aq) + NO3^-(aq)
Net ionic equation;
2NH3(aq) + Ag^+(aq) --------> [Ag(NH3)2]^+(aq)
When Silver nitrate is mixed with a solution of aqueous ammonia, a white and cloudy solution was observed.
Because you need to know what you are looking for before actually trying something so you can prevent any accidents by doing stuff at random
Because some atoms<span> are more stable when they </span>gain or lose<span> an </span>electron<span> and </span>form ions<span>.</span>
Answer:
164.3g of NaCl
Explanation:
Based on the chemical equation:
CaCl2 + 2NaOH → 2NaCl + Ca(OH)2
<em>where 1 mole of CaCl2 reacts with 2 moles of NaOH</em>
To solve this question we must convert the mass of CaCl2 to moles. Using the chemical equation we can find the moles of NaCl and its mass:
<em>Moles CaCl2 -Molar mass: 110.98g/mol-</em>
156.0g CaCl₂ * (1mol / 110.98g) = 1.4057 moles CaCl2
<em>Moles NaCl:</em>
1.4057 moles CaCl2 * (2mol NaCl / 1mol CaCl2) = 2.811 moles NaCl
<em>Mass NaCl -Molar mass: 58.44g/mol-</em>
2.811 moles NaCl * (58.44g / mol) = 164.3g of NaCl