A skateboard coasting on a flat surface slows down and then comes to a stop because the skateboard runs out of energy, and slows down, also, sense it is on a flat surface and not going downhill, it goes slower.
Volatility is a chemical property. The other ones are chemical properties
The answer for the following problem is mentioned below.
- <u><em>Therefore the final temperature of the gas is 740 K</em></u>
Explanation:
Given:
Initial pressure of the gas (
) = 1.8 atm
Final pressure of the gas (
) = 4 atm
Initial temperature of the gas (
) = 60°C = 60 + 273 = 333 K
To solve:
Final temperature of the gas (
)
We know;
From the ideal gas equation;
we know;
P × V = n × R × T
So;
we can tell from the above equation;
<u> P ∝ T</u>
(i.e.)
<em> </em>
<em> = constant</em>
= 
Where;
= initial pressure of a gas
= final pressure of a gas
= initial temperature of a gas
= final temperature of a gas
= 
=
= 740 K
<u><em>Therefore the final temperature of the gas is 740 K</em></u>
Answer:
Option A
Explanation:
A) Yes. The reaction reaches equilibrium when the rate of reaction of the reverse reaction is equal to the rate of the forward reaction , then the only cause for the reverse reaction to be favoured is that the initial rate of the reverse was greater than the forward one.
B) No. The rate constant of the reverse reaction can be greater than the forward one but the rate also depends on concentrations, thus a reverse reaction with greater rate constant can result in the net reaction proceeding in the forward reaction, the reverse reaction or be at equilibrium depending on the concentrations or reactants and products
C) No. A lower activation energy means a higher rate constant , but a higher rate constant does not mean that the net reaction will proceed to the reactants ( see point B)
D) No. The energy changes determine conditions under thermodynamic equilibrium and therefore the net direction of the reaction will depend on the temperature and concentrations of reactants and products with respect to the equilibrium conditions.