Answer:
idk search it on google chrome
Explanation:
Answer:
Vi = 32 [m/s]
Explanation:
In order to solve this problem we must use the following the two following kinematics equations.

The negative sign of the second term of the equation means that the velocity decreases, as indicated in the problem.
where:
Vf = final velocity = 8[m/s]
Vi = initial velocity [m/s]
a = acceleration = [m/s^2]
t = time = 5 [s]
Now replacing:
8 = Vi - 5*a
Vi = (8 + 5*a)
As we can see we have two unknowns the initial velocity and the acceleration, so we must use a second kinematics equation.

where:
d = distance = 100[m]
(8^2) = (8 + 5*a)^2 - (2*a*100)
64 = (64 + 80*a + 25*a^2) - 200*a
0 = 80*a - 200*a + 25*a^2
0 = - 120*a + 25*a^2
0 = 25*a(a - 4.8)
therefore:
a = 0 or a = 4.8 [m/s^2]
We choose the value of 4.8 as the acceleration value, since the zero value would not apply.
Returning to the first equation:
8 = Vi - (4.8*5)
Vi = 32 [m/s]
Answer:
area is 2d volume is 3d
Explanation:
Area refers to the size of two-dimensional surface. Volume refers to the size of a three-dimensional space.
Answer:
Collisions are basically two types: Elastic, and inelastic collision. Elastic collision is defined as the colliding objects return quickly without undergoing any heat generation. Inelastic collision is defined as the where heat is generated, and colliding objects are distorted.
In elastic collision, the total kinetic energy, momentum are conserved, and there is no wasting of energy occurs. Swinging balls is the good example of elastic collision. In inelastic collision, the energy is not conserved it changes from one form to another for example thermal energy or sound energy. Automobile collision is good example, of inelastic collision.
The Answer is Option C
I think...
Sorry If i am wrong...