Answer: lift force = 100sin60 = 86.6 N
pull force = 100sin60 = 50.0 N
Explanation:
"<span>H-C=N:" is the one answer among the choices given in the question that shows the correct dot diagram. The correct option among all the options that are given in the question is the fourth option or option "D". The other choices can be neglected. I hope that this is the answer that has come to your help.</span>
Answer:
E = 307667 N/C
Explanation:
Since the object's mass is 1 g, then its weight in newtons is 0.001 * 9.8 = 0.0098 N.
This weight should have the same magnitude of the vertical component of the tension T of the string (T * cos(37)) so we can find the magnitude of the tension T via:
0.0098 N = T * cos(37)
then T = 0.0098/cos(37) N = 0.01227 N
Knowing the tension's magnitude, we can find its horizontal component:
T * sin(37) = 0.007384 N
and now we can obtain the value of the electric field since we know the charge of the ball to be: -2.4 * 10^(-8) C:
0.007384 N = E * 2.4 * 10^(-8) C
Then E = 0.007384/2.4 * 10^(-8) N/C
E = 307667 N/C
Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
Answer:

Now,buyantant force

so;




Now,



And now,



Hence that,specific density of a given body is 3
please mark me as brainliest, please