Answer:1.55 times
Explanation:
Given
First wavelength
Second wavelength
According wien's diplacement law

where 
T=Temperature
Let
be the temperatures corresponding to
respectively.



Thus object with
is 1.55 times hotter than object with wavelength 
Answer: B. 44.64 g
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Mass of reactants = mass of iron + mass of oxygen = mass of iron + 34.7 g
Mass of product = mass of iron oxide = 79.34 g
As Mass of reactants = Mass of product
mass of iron + 34.7 g = 79.34 g
mass of iron = 44.64 g
Thus 44.64 g of iron was used in the reaction
I think the answer is photosynthis, when plants turn light into food and energy.
Answer of your question is in this photo
<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
Young's Modulus is defined as the ratio of stress acting on a substance to the amount of strain produced.
Stress is defined as force per unit area and strain is defined as proportional deformation in a material.
The equation representing Young's Modulus is:

where,
Y = Young's Modulus
F = force exerted by the weight
l = length of wire
A = area of cross section
= change in length
Hence, the correct answer is Option b.