1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
qaws [65]
3 years ago
14

Consider identical spherical conducting space ships in deep space where gravitational fields from other bodies are negligible co

mpared to the gravitational attraction between the ships. Construct a problem in which you place identical excess charges on the space ships to exactly counter their gravitational attraction. Calculate the amount of excess charge needed. Examine whether that charge depends on the distance between the centers of the ships, the masses of the ships, or any other factors. Discuss whether this would be an easy, difficult, or even impossible thing to do in practice.
Physics
1 answer:
Illusion [34]3 years ago
6 0

Answer:

 q = 8.61 10⁻¹¹ m

charge does not depend on the distance between the two ships.

it is a very small charge value so it should be easy to create in each one

Explanation:

In this exercise we have two forces in balance: the electric force and the gravitational force

          F_e -F_g = 0

          F_e = F_g

Since the gravitational force is always attractive, the electric force must be repulsive, which implies that the electric charge in the two ships must be of the same sign.

Let's write Coulomb's law and gravitational attraction

         k \frac{q_1q_2}{r^2} = G \frac{m_1m_2}{r^2}

In the exercise, indicate that the two ships are identical, therefore the masses of the ships are the same and we will place the same charge on each one.

          k q² = G m²

          q = \sqrt{ \frac{G}{k} }    m

we substitute

           q = \sqrt{ \frac{ 6.67 \ 10^{-11}}{8.99 \ 10^{9}} }   m

            q = \sqrt{0.7419 \ 10^{-20}}   m

           q = 0.861 10⁻¹⁰ m

           q = 8.61 10⁻¹¹ m

This amount of charge does not depend on the distance between the two ships.

It is also proportional to the mass of the ships with the proportionality factor found.

Suppose the ships have a mass of m = 1000 kg, let's find the cargo

            q = 8.61 10⁻¹¹ 10³

            q = 8.61 10⁻⁸ C

             

this is a very small charge value so it should be easy to create in each one

You might be interested in
WHICH ONE!!! ASAP FOR A RETAKE FOR SCIENCE PLS
aleksandr82 [10.1K]
I’m 95% sure it’s covalent bonds.
8 0
3 years ago
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
Julio hit a baseball. What caused the ball to change direction at the time of impact?
WARRIOR [948]
The answer is c. the force of his swing

At the time of the impact, there is a collision between two bodies moving in opposite directions. 

The force exerted on the ball causes the change of velocity.
7 0
3 years ago
Read 2 more answers
The displacement vector A and B when added together , give the resultant vector R so that R= A+B use the data in the drawing and
Salsk061 [2.6K]
The addition of vectors involve both magnitude and direction. In this case, we make use of a triangle to visualize the problem. The length of two sides were given while the measure of the angle between the two sides can be derived. We then assign variables for each of the given quantities.

Let:

b = length of one side = 8 m
c = length of one side = 6 m
A = angle between b and c = 90°-25° = 75°

We then use the cosine law to find the length of the unknown side. The cosine law results to the formula: a^2 = b^2 + c^2 -2*b*c*cos(A). Substituting the values, we then have: a = sqrt[(8)^2 + (6)^2 -2(8)(6)cos(75°)]. Finally, we have a = 8.6691 m.

Next, we make use of the sine law to get the angle, B, which is opposite to the side B. The sine law results to the formula: sin(A)/a = sin(B)/b and consequently, sin(75)/8.6691 = sin(B)/8. We then get B = 63.0464°. However, the direction of the resultant vector is given by the angle Θ which is Θ = 90° - 63.0464° = 26.9536°.

In summary, the resultant vector has a magnitude of 8.6691 m and it makes an angle equal to 26.9536° with the x-axis.
 
5 0
3 years ago
The energy levels of a particular quantum object are -11.7 eV, -4.2 eV, and -3.3 eV. If a collection of these objects is bombard
gogolik [260]

To solve this problem it is necessary to apply an energy balance equation in each of the states to assess what their respective relationship is.

By definition the energy balance is simply given by the change between the two states:

|\Delta E_{ij}| = |E_i-E_j|

Our states are given by

E_1 = -11.7eV

E_2 = -4.2eV

E_3 = -3.3eV

In this way the energy balance for the states would be given by,

|\Delta E_{12}| = |E_1-E_2|\\|\Delta E_{12}| = |-11.7-(-4.2)|\\|\Delta E_{12}| = 7.5eV\\

|\Delta E_{13}| = |E_1-E_3|\\|\Delta E_{13}| = |-11.7-(-3.3)|\\|\Delta E_{13}| = 8.4eV

|\Delta E_{23}| = |E_2-E_3|\\|\Delta E_{23}| = |-4.2-(-3.3)|\\|\Delta E_{23}| = 0.9eV

Therefore the states of energy would be

Lowest : 0.9eV

Middle :7.5eV

Highest: 8.4eV

8 0
3 years ago
Other questions:
  • The signal to a speaker causes .5 amps of current. The signal level is increased to 2.5 amps. What is the gain, rounded to the n
    15·1 answer
  • If red and yellow paint are mixed together, which color of light will be reflected?
    9·2 answers
  • Which of the following are physical properties of non-metals? Select all that apply.
    11·2 answers
  • A 2-kg bowling ball sits on top of a building that is 40 meters tall.
    9·2 answers
  • Newtons third law says that if Robert exerts a _______ of 1000 Newtons on an object, it will exert an equal and opposite _______
    6·1 answer
  • What is the shape of a solid?
    10·1 answer
  • 22. Explain why it is better to increase the biodiversity of ecosystem.
    15·1 answer
  • A circuit has a resistance of 8 Ohms. the voltage supplied to the circuit is 14 volts. what is the current flowing through it?
    8·1 answer
  • A new planet has been discovered and given the name Planet X . The mass of Planet X is estimated to be one-half that of Earth, a
    11·1 answer
  • Question 20 of 20
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!