The ball's vertical position
in the air at time
is

The ball is at its original height when
, which happens at


Meanwhile, the ball's horizontal position
at time
is

So when the ball reaches its original height a second time, the ball will have traveled a horizontal distance of

(which you might recognize as the formula for the range of a projectile)
To reach a distance of
, the initial speed
would be

Answer:
Increase in total energy will be equal to the increase in the internal energy i.e
Joules
Explanation:
Given
Weight of sledge hammer
kilogram
Speed of sledge hammer
meter per second
Kinetic energy is equal to half the product of mass and velocity square

Substituting the value of mass and velocity, we get -

It is given that one fourth of the energy is converted into internal energy
One fourth of kinetic energy is equal to

Increase in total energy will be equal to the increase in the internal energy i.e
Joules
Answer: Voltage is the same across each component of the parallel circuit. The sum of the currents through each path is equal to the total current that flows from the source. You can find total resistance in a Parallel circuit with the following formula: 1/Rt = 1/R1 + 1/R2 + 1/R3 +.
Hope this helps!
Answer: The wave can flip upside down.
Reflection is the bending of a wave when it cannot pass through. For example, plain mirrors which are flat, a ray of light hits the mirror and is reflected from the mirror since it cannot pass through
When reflection occurs the speed and frequency of the wave does not change but the wave is flipped upside down.
The speed does not change because speed is affected by the change in medium the frequency also remains the same since the energy of the wave does not change.
Second hand:
1 rev per minute = (2π radians/minute) x (1 min/60sec) = π/30 rad/sec
Minute hand:
1 rev per hour = (2π radians/hour) x (1 hr/3600 sec) = π/1800 rad/sec
Hour hand:
1 rev per 12 hours = (2π rad/12 hr) x (1 hr/3600 sec) = π/21,600 rad/sec
As long as the clock is in good working order, and the hands are turning steadily at their normal rate, there is no angular acceleration.