4 because barium is ionic and chlorine is covelent
Answer:
The strong acids are fully ionized in aqueous solution, and they contains higher concentration of hydrogen ions. Strong acids are lower pH in nature. Some examples of strong acids are:
1) Hydrochloric acid.
2) Nitric acid.
3) Sulfuric acid.
The weak acids are not fully ionized, means they are partially ionized in aqueous solution, and they contains lower concentration of hydrogen ions. Weak acids are higher pH in nature than strong acid. Some examples of weak acids are:
1) Ethanoic acid.
2) Acetic acid.
3) Nitrous acid.
Answer:
Tenant farming is an agricultural production system in which landowners contribute their land and often a measure of operating capital and management, while tenant farmers contribute their labor along with at times varying amounts of capital and management.
Explanation:
Answer:
16.5moles of CO2
Explanation:
Molar mass of O2 is 32g/Mol
No of mole = 880/32 = 27.5 moles
27.5 Mol of O2 gives X mole of CO2
5 mole of O2 gives 3 moles of CO2
No of mole of CO2 = (27.5×3)/ 5 = 16.5moles
Remark
The question with these kind of problems is "Which R do you use?" That's where dimensional analysis is so handy. You must look at the units of the givens and choose your R accordingly. You'll see how that works in a moment.
You need to list the givens along with their units and in this case the property you want to solve for. You need all that to determine the R value
Givens
n = 0.25 moles
T = 35°C = 35 + 273.15 = 308.15°K
V = 6.23 L
Pressure = P in kPa
Which R
The units of the R you want has to have units of moles, kPa, °K and liters
The R that you want is 8.314
<em><u>Formula</u></em>
PV = nRT
P 6.23 = 0.25 * 8.314 * 308.15 Combine the left
P*6.23 = 640.5
P = 640.5/6.23 = 102.81 The answer should be 100 kpA of 1.0 * 10^2 kPa
because the number of moles has only 2 sig digs.
But if sig digs are not a problem 102.8 is likely close enough.
Second Question
You are going to have to clean up the numbers. I think I've got only 1 chance at this. The partial pressures of the 2 gases will add up to the total pressure. So the total pressure was 100 approx and the water vapor was 3.36 kPa. The difference is
Total = air + water vapor
100.18 = air + 3.36 about Subtract 3.36 from both sides.
100.18 - 3.36 = 96.82 about. Pick the answer that is closest to that. I'll clean up the numbers if I can.
Answer C