<u>Answer:</u> 2.00 atm
<u>Explanation:</u>
The gas is kept under the same temperature in this problem. Assuming the amount of gas is constant, we can apply the Boyle's law.
The Boyle's law equation,
P₁V₁ = P₂V ₂
Plug in the values,
1.00 atm x 4.0 L = P₂ x 2.0 L
Simplify,
4.00 atm L = 2 P₂ L
Now flip the equation,
2 P₂ L = 4.00 atm L
Dividing both sides by 2 we get,
P₂ = 2.00 atm
Answer: fixed shape and volume
Explanation:
i took the quiz so its right
<span>
Correct Answer:
Option 3 i.e. 30 g of KI dissolved in 100 g of water.
Reason:
Depression in freezing point is a
colligative property and it is directly proportional to molality of solution.
Molality of solution is mathematically expressed as,
Molality = </span>

<span>
In case of
option 1 and 2, molality of solution is
0.602 m. For
option 3, molality of solution is
1.807 m, while in case of
option 4, molality of solution is
1.205 m.
<u><em>Thus, second solution (option 2) has highest concentration (in terms of molality). Hence, it will have lowest freezing point</em></u></span>
Answer:
Gram atomic mass of an element can be defined as the mass of one mole of atoms of a particular element. It is numerically equivalent to the value of the element's atomic mass unit but has its unit in grams.