Answer:
312 g of O₂
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2KClO₃ —> 2KCl + 3O₂
From the balanced equation above,
2 mole of KClO₃ decomposed to 3 moles of O₂.
Next, we shall determine the number of mole of O₂ produced by the reaction of 6.5 moles of KClO₃. This can be obtained as follow:
From the balanced equation above,
2 mole of KClO₃ decomposed to 3 moles of O₂.
Therefore, 6.5 moles of KClO₃ will decompose to produce = (6.5 × 3)/2 = 9.75 moles of O₂.
Finally, we shall determine the mass of 9.75 moles of O₂. This can be obtained as follow:
Mole of O₂ = 9.75 moles
Molar mass of O₂ = 2 × 16 = 32 g/mol
Mass of O₂ =?
Mole = mass / Molar mass
9.75 = Mass of O₂ / 32
Cross multiply
Mass of O₂ = 9.75 × 32
Mass of O₂ = 312 g
Thus, 312 g of O₂ were obtained from the reaction.
Well first we can say that B. and D. are out BC they are physical changes we are looking for chemical changes when burning gas, the gas is burning and converting into heat energy AKA FIRE!!!. so the answer is indeed (A. <span>Chemical bonds are broken and others are formed.)
</span>
<span />BTW im not a girl every one ask that. the girls in the pic is my GF
any ways i hope you can learn something new from this. :) <3 have any amazing day
Can you translate to english?
Answer:
If the pKa of the acid is low (negative), then the acid is strong.
Explanation:
Ka, <em>the acid ionization constant, </em>measures the strength of an acid in a solution. Stronger acids have higher Ka values.
We defined: pKa = -log[Ka]
This function is a decreasing function, meaning that pKa will be getting smaller and smaller, while increasing Ka (high values of Ka will have negative pKa values). Therefore, stronger acids (high values of Ka), will have low (negative) pKa values.
Answer:
yaeh
Explanation:
a)Ca(OH)
2
+CO
2
⟶CaCO
3
+H
2
O
No. of atoms:Ca−1;O−4;H−2;C−1
b)Zn+AgNO
3
⟶ZnNO
3
+Ag
No. of atoms:Zn−1;Ag−1;N−1;O−3.