Answer:
Freezing point is -2.81°C
Explanation:
34g/342gmol^-1 = 0.0994mol
n = m/mr
Molarity= 0.994/ 0.66 = 1.51M
◇T = -i × m ×Kf
Where ◇T is freezing depression
i= Vant Hoff factor
m = molarity
Kf = freezing content = 1.
860kgmol^-1
◇T =-1 × 1.51 × 1.860 = - 2.81°C
Free electrons tend to go from the negatively charged body to the positively charged body
Answer:
V CH4(g) = 190.6 L
Explanation:
assuming ideal gas:
∴ STP: T =298 K and P = 1 atm
∴ R = 0.082 atm.L/K.mol
∴ moles (n) = 7.80 mol CH4(g)
∴ Volume CH4(g) = ?
⇒ V = RTn/P
⇒ V CH4(g) = ((0.082 atm.L/K.mol)×(298 K)×(7.80 mol)) / (1 atm)
⇒ V CH4(g) = 190.6 L
The name of the chemical made of 14 g Lithium or 2 moles
Lithium, 32 g Sulfur or 1 mol sulfur and 64 g oxygen or 4 moles of oxygen is
Lithium sulfate. From the chemical reation:
<span>2Li + S + 4O > Li2SO4</span>
Answer:
[H₂] = 1.61x10⁻³ M
Explanation:
2H₂S(g) ⇋ 2H₂(g) + S₂(g)
Kc = 9.30x10⁻⁸ = ![\frac{[H_{2}]^2[S_{2}]}{[H_{2}S]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH_%7B2%7D%5D%5E2%5BS_%7B2%7D%5D%7D%7B%5BH_%7B2%7DS%5D%5E2%7D)
First we <u>calculate the initial concentration</u>:
0.45 molH₂S / 3.0L = 0.15 M
The concentrations at equilibrium would be:
[H₂S] = 0.15 - 2x
[H₂] = 2x
[S₂] = x
We <u>put the data in the Kc expression and solve for x</u>:


We make a simplification because x<<< 0.0225:

x = 8.058x10⁻⁴
[H₂] = 2*x = 1.61x10⁻³ M