Answer:
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Explanation:
2 NO (g) + O₂ (g) ⇄ 2NO₂ (g)
Let's apply the thermodynamic formula to calculate the ΔG
ΔG = ΔG° + R .T . lnQ
We don't know if the gases are at equilibrium, that's why we apply Q (reaction quotient)
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln Q
How can we know Q? By the partial pressures (Qp)
P NO = 0.450atm
PO₂ = 0.1 atm
PNO₂ = 0.650 atm
Qp = [NO₂]² / [NO]² . [O₂]
Qp = 0.650² / 0.450² . 0.1 = 20.86
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln 20.86
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
b
the color of lines
Explanation:
on the atomic spectrum for an atom
Answer:
90
Explanation:
gshhhshussussussjsuushhshjssuss
Answer:
Explanation:
The moon would fall and earth as well
When utilizing the gravimetric method, it is crucial to completely dissolve your sample in 10 mL of water. A quantitative technique called gravimetric analysis employs the selective precipitation of the component under study from an aqueous solution.
A group of techniques known as gravimetric analysis are employed in analytical chemistry to quantify an analyte based on its mass. Gravimetric analysis is a quantitative chemical analysis technique that transforms the desired ingredient into a substance (of known composition) that can be extracted from the sample and weighed. This is a crucial point to remember.
Gravimetric water content (g) is therefore defined as the mass of water per mass of dry soil. To calculate it, weigh a sample of wet soil, dry it to remove the water, and then weigh the dried soil (mdry). Dimensions of the sample Water is commonly forgotten despite having a density close to one.
To know more about gravimetry, please refer:
brainly.com/question/18992495
#SPJ4