If i am not mistake u can use -log[concentration of oh-] to find it
ie -log[6.4*10^-10]=9.19
Solution :
Time (sec) Volume of NaOH (mL)
339 26.23
1242 27.80
2745 29.70
4546 3.81
39.81
Now the example of the first order kinetics w.r.t volumetric analysis is :

Here, 

= volume at time 0 = 0
Since the interval is not constant, we take the time interval as


= 1402.3333
≈ 1402 seconds


= 0.001643 x 0.52045
= 0.00082

Therefore, the first order rate constant is k
.
The half reactions as they occur at each electrode
is as follows
at the anode Sn(s) =sn^2+(aq) + 2e -
at the cathode 2 ag^+(aq) + 2e - = 2Ag (s)
net cell reaction = Sn (s) + 2Ag^+(aq) = sn^2+ (aq) + 2 Ag (s)
Answer:Osmotic pressure is the minimum amount of pressure a solution must exert in order to prevent from crossing a barrier by osmosis. Solute molecules have difficulty crossing semipermeable membranes, so the more solutes that are in a solution, the higher the osmotic pressure will be. Between 30% sucrose and 60% sucrose, 60% sucrose will have a greater osmotic pressure than 30% because it has a higher percentage of solutes. However, since sucrose has a higher potential to cross semipermeable membranes and is more absorbable than magnesium sulfate, magnesium sulfate would have a higher osmotic pressure than 60% sucrose even though 60% sucrose has higher molecules.
Explanation:
Energy lost to condense = 803.4 kJ
<h3>Further explanation</h3>
Condensation of steam through 2 stages:
1. phase change(steam to water)
2. cool down(100 to 0 C)
1. phase change(condensation)
Lv==latent heat of vaporization for water=2260 J/g

2. cool down
c=specific heat for water=4.18 J/g C

Total heat =
