To answer the following questions for this specific problem:
a. 11.48 secs
b. Vp = a*t*3.6 =
3*11.48*3.6 = 124.0 km/h
<span>c. 9.1 secs. </span>
I am hoping that this answer has satisfied your query about
and it will be able to help you.
First,

where
is density,
is mass, and
is volume. We can compute the volume of the roll:


When the roll is unfurled, the aluminum will be a rectangular box (a very thin one), so its volume will be the product of the given area and its thickness
. Note that we're assuming the given area is not the actual total surface area of the aluminum box, but just the area of the largest face (i.e. the area of one side of the unrolled sheet of aluminum).
So we have

where
is the given area, so


If we're taking significant digits into account, the volume we found would have been
, in turn making the thickness
.
The speed
of the elevator at the beginning of the 8 m descent is nearly 4 m/s. Hence, option A is the correct answer.
We are given that-
the mass of the elevator (m) = 1000 kg ;
the distance the elevator decelerated to be y = 8m ;
the tension is T = 11000 N;
let us determine the acceleration 'a' by using Newton's second law of motion.
∑Fy = ma
W - T = ma
(1000kg x 9.8 m/s² ) - 11000N = 1000 kg x a
9800 - 11000 = 1000
a = - 1.2 m/s²
Using the equation of kinematics to determine the initial velocity.
² =
² + 2ay
= √ ( 2 x 1.2m/s² x 8 m )
= √19.2 m²/s²
= 4.38 m/s ≈ 4 m/s
Hence, the initial velocity of the elevator is 4m/s.
Read more about the Equation of kinematics:
brainly.com/question/12351668
#SPJ4
Answer:
Explanation:
speed is define as rate of change of distance or displacement
v=s/t
s=8 m
t=4s
v=8/4
v=2 m/s