Answer:
<em>b. Observe the radio waves coming from all dark matter; from the strength of the radio waves from each cluster, estimate the amount of dark matter needed to produce them.</em>
<em></em>
Explanation:
The universe is thought to be made up of 85% dark matters. <em>Dark matter is called dark because it does not appear to interact with the electromagnetic field, which means it doesn't absorb, reflect or emit electromagnetic radiation, and is therefore difficult to detect. This means that option b is wrong since radio wave is an electromagnetic wave</em>. Dark matter is a form of matter that makes up about a quarter of the total mass–energy density of the universe. Dark matter was theorized due a variety of astrophysical observations and gravitational effects that cannot be explained by accepted theories of gravity unless there were more matter in the universe than can be seen.
Answer:
mantle
Explanation:
Below the crust lies a layer of very hot, almost solid rock called the mantle. Beneath the mantle lies the core. The outer core is a liquid mix of iron and nickel, but the inner core is solid metal. Sometimes, hot molten rock, called magma, bursts through Earth's surface in the form of a volcano.
Answer:
3.4 mT
Explanation:
L = 0.53 m
i = 7.5 A
Theta = 19 degree
F = 4.4 × 10^-3 N
Let B be the strength of magnetic field.
Force on a current carrying conductor placed in a magnetic field.
F = i × L × B × Sin theta
4.4 × 10^-3 = 7.5 × 0.53 × B × Sin 19
B = 3.4 × 10^-3 Tesla
B = 3.4 mT
Mass- Mass is measured in kilograms (kg).
Weight- Weight is measured in Newton’s.
Factor out 8 and then facotr and u get
8/9(9x+1)(9x-1