Answer:
(a) 1.21 m/s
(b) 2303.33 J, 152.27 J
Explanation:
m1 = 95 kg, u1 = - 3.750 m/s, m2 = 113 kg, u2 = 5.38 m/s
(a) Let their velocity after striking is v.
By use of conservation of momentum
Momentum before collision = momentum after collision
m1 x u1 + m2 x u2 = (m1 + m2) x v
- 95 x 3.75 + 113 x 5.38 = (95 + 113) x v
v = ( - 356.25 + 607.94) / 208 = 1.21 m /s
(b) Kinetic energy before collision = 1/2 m1 x u1^2 + 1/2 m2 x u2^2
= 0.5 ( 95 x 3.750 x 3.750 + 113 x 5.38 x 5.38)
= 0.5 (1335.94 + 3270.7) = 2303.33 J
Kinetic energy after collision = 1/2 (m1 + m2) v^2
= 0.5 (95 + 113) x 1.21 x 1.21 = 152.27 J
Maybe the word could be converted?
<span>1.an electric is induced when you move a magnet through a coil wire
2.a greater electric current is induced if you add more loops of wire</span>
Answer:
Kinda? Depends what the question is fully asking
Explanation:
Acceleration is a change in velocity. So I guess if the velocity of something is -2 m/s and its positively accelerating at a value of +1 m/s, then that means every second its velocity changes by +1m/s.
So that -2 m/s thing after one second will be going -1 m/s.
After another second it'll be going 0 m/s.
After another itll be going +1 m/s and so on.
So at one point for a brief moment, it can have an acceleration but be at 0 m/s velocity.
Answer:
it’s an example of a generator.
Explanation: