Answer:
537 N
Explanation:
The force due to gravity of a planet is:
F = GMm / r²
where G is the universal gravitational constant
M is the mass of the planet
m is the mass of the object
and r is the distance between the object and the center of the planet
On Earth, you weigh 716 N, so:
716 N = GMm / r²
On planet X:
F = G (3M) m / (2r)²
F = 3/4 GMm / r²
F = 3/4 (716 N)
F = 537 N
Answer:
m v1 = (m + M) v2
v2 = m v1 / (m + M)
v2 = 7 * 74 / (74 + 65)
3.73 m/s
74 kg is too heavy for the cannonball (over 150 lbs)
Increasing mass increases kinetic energy. This can be seen in the equation KE = 1/2 (m) (v)^2
If you found this helpful, please brainliest me!
The evidence that the universe is expanding comes with something called the red shift<span> of light. Light travels to Earth from other galaxies. As the light from that galaxy gets closer to Earth, the distance between Earth and the galaxy increases, which causes the wavelength of that light to get longer.</span>
we know the equation for the period of oscillation in SHM is as follows:
T = 2 * pi * sqrt(mass/k)
we know f = 1/T, so f = 1/(2 * pi) * sqrt(k/m).
since d = v*T, we can say v = d/t = d * f
the final equation, after combining everything, is as follows:
v = d/(2 * pi) * sqrt(k/m)
by plugging everything in
v = .75/(2 * pi) * sqrt((1 * 10^5)/(30))
We find our velocity to be:
v = 6.89 m/s