Changes into new substances called product.
Answer:
A solution that is 0.10 M HCN and 0.10 M LiCN
Explanation:
- A good buffer system contains a weak acid and its salt or a weak base and its salt.
- In this case; A solution that is 0.10 M HCN and 0.10 M LiCN, would make a good buffer system.
- HCN is a weak acid, while LiCN is a salt of the weak acid, that is, CN- conjugate of the acid.
a) before addition of any KOH :
when we use the Ka equation & Ka = 4 x 10^-8 :
Ka = [H+]^2 / [ HCIO]
by substitution:
4 x 10^-8 = [H+]^2 / 0.21
[H+]^2 = (4 x 10^-8) * 0.21
= 8.4 x 10^-9
[H+] = √(8.4 x 10^-9)
= 9.2 x 10^-5 M
when PH = -㏒[H+]
PH = -㏒(9.2 x 10^-5)
= 4
b)After addition of 25 mL of KOH: this produces a buffer solution
So, we will use Henderson-Hasselbalch equation to get PH:
PH = Pka +㏒[Salt]/[acid]
first, we have to get moles of HCIO= molarity * volume
=0.21M * 0.05L
= 0.0105 moles
then, moles of KOH = molarity * volume
= 0.21 * 0.025
=0.00525 moles
∴moles HCIO remaining = 0.0105 - 0.00525 = 0.00525
and when the total volume is = 0.05 L + 0.025 L = 0.075 L
So the molarity of HCIO = moles HCIO remaining / total volume
= 0.00525 / 0.075
=0.07 M
and molarity of KCIO = moles KCIO / total volume
= 0.00525 / 0.075
= 0.07 M
and when Ka = 4 x 10^-8
∴Pka =-㏒Ka
= -㏒(4 x 10^-8)
= 7.4
by substitution in H-H equation:
PH = 7.4 + ㏒(0.07/0.07)
∴PH = 7.4
c) after addition of 35 mL of KOH:
we will use the H-H equation again as we have a buffer solution:
PH = Pka + ㏒[salt/acid]
first, we have to get moles HCIO = molarity * volume
= 0.21 M * 0.05L
= 0.0105 moles
then moles KOH = molarity * volume
= 0.22 M* 0.035 L
=0.0077 moles
∴ moles of HCIO remaining = 0.0105 - 0.0077= 8 x 10^-5
when the total volume = 0.05L + 0.035L = 0.085 L
∴ the molarity of HCIO = moles HCIO remaining / total volume
= 8 x 10^-5 / 0.085
= 9.4 x 10^-4 M
and the molarity of KCIO = moles KCIO / total volume
= 0.0077M / 0.085L
= 0.09 M
by substitution:
PH = 7.4 + ㏒( 0.09 /9.4 x 10^-4)
∴PH = 8.38
D)After addition of 50 mL:
from the above solutions, we can see that 0.0105 mol HCIO reacting with 0.0105 mol KOH to produce 0.0105 mol KCIO which dissolve in 0.1 L (0.5L+0.5L) of the solution.
the molarity of KCIO = moles KCIO / total volume
= 0.0105mol / 0.1 L
= 0.105 M
when Ka = KW / Kb
∴Kb = 1 x 10^-14 / 4 x 10^-8
= 2.5 x 10^-7
by using Kb expression:
Kb = [CIO-] [OH-] / [KCIO]
when [CIO-] =[OH-] so we can substitute by [OH-] instead of [CIO-]
Kb = [OH-]^2 / [KCIO]
2.5 x 10^-7 = [OH-]^2 /0.105
∴[OH-] = 0.00016 M
POH = -㏒[OH-]
∴POH = -㏒0.00016
= 3.8
∴PH = 14- POH
=14 - 3.8
PH = 10.2
e) after addition 60 mL of KOH:
when KOH neutralized all the HCIO so, to get the molarity of KOH solution
M1*V1= M2*V2
when M1 is the molarity of KOH solution
V1 is the total volume = 0.05 + 0.06 = 0.11 L
M2 = 0.21 M
V2 is the excess volume added of KOH = 0.01L
so by substitution:
M1 * 0.11L = 0.21*0.01L
∴M1 =0.02 M
∴[KOH] = [OH-] = 0.02 M
∴POH = -㏒[OH-]
= -㏒0.02
= 1.7
∴PH = 14- POH
= 14- 1.7
= 12.3
The answer is A. this process is only in the research phase
The process of fusion involves merging of atomic nuclei to
form heavier nuclei resulting in the release of enormous amounts of energy.
Fusion takes place when two low mass isotopes, typically isotopes of hydrogen,
unite under conditions of extreme pressure and temperature. Scientists continue
to work on controlling nuclear fusion in an effort to make a fusion reactor to
produce electricity. However, progress is slow due to challenges with
understanding how to control the reaction in a contained space.