Ionic bonds are formed when one of the two atoms that are reacting has excess electrons and transfer the electrons to the atom that is deficient in electrons. During the formation of the ionic bond, one of the reacting atoms will donate electrons and form positive ion.
According to Gayle Lusac's law, pressure is proportional to absolute temperature of a gas. Thus:
P/T = constant
So if the temperature becomes 3T, the pressure would increase to 3P
Answer:
The volume of NO₂ gas collected over water at 25.0 °C is 1.68 Liters.
Explanation:

Moles of copper = 
According to reaction, 1 mol of copper gives 2 moles of nitrogen dioxide gas.
Then 0.03613 moles of copper will give:
of nitrogen dioxide gas
Moles of nitrogen dioxide gas = n = 0.06326 mol
Pressure of the gas = P
P = Total pressure - vapor pressure of water
P = 726 mmHg - 23.8 mmHg = 702.2 mmHg
P = 0.924 atm (1 atm = 760 mmHg)
Temperature of the gas = T = 25.0°C =298.15 K
Volume of the gas = V


V = 1.68 L
The volume of NO₂ gas collected over water at 25.0 °C is 1.68 Liters.
<span>The molecular mass of sodium oxide (Na2O) is A. 61.97894. The molecular mass of a molecule (Mr) is the sum of atomic masses of its atoms (Ar). The molecular mass of sodium oxide is: Mr(Na2O) = 2 * Ar (Na) + Ar(O). From the periodic table, Ar(Na) = 22.989769 and Ar(O) = 15.9994. The molecular mass of sodium oxide is: Mr(Na2O) = 2 * 22.989769 + 15.9994 = 45.979538 + 15.9994 = 61.97894.</span>
Answer:
D. 0.36 g
Explanation:
When a gas is collected over water, the total pressure is the sum of the pressure of the gas and the pressure of the water vapor.
Ptotal = Pwater + PN₂
PN₂ = Ptotal - Pwater = 730 torr - 23.76 torr = 706 torr
We can find the mass of N₂ using the ideal gas equation.
