Answer:
Gravitational attraction of the sun.
Explanation:
Gravity is an attractive force. Any two masses will exert an attractive force on the other according to Newton's law of universal gravitation. The more massive the objects, the stronger the force. The sun, as you can probably guess, is pretty massive - 330,000 times more than Earth, and 1,048 time more than Jupiter, our solar system's largest planet. Just like man-made satellites around Earth, the planets in our solar system are constant process of "falling" around the sun, locked in their orbits by its mass, but slowing dramatically in their orbital velocity the further away they are.
Idk maybe excersice everyday
Option d
. as they produce some hydrocarbon and methane etc
Answer:
ee that the lens with the shortest focal length has a smaller object
Explanation:
For this exercise we use the constructor equation or Gaussian equation
where f is the focal length, p and q are the distance to the object and the image respectively.
Magnification a lens system is
m =
= -
h ’= -\frac{h q}{p}
In the exercise give the value of the height of the object h = 0.50cm and the position of the object p =∞
Let's calculate the distance to the image for each lens
f = 6.0 cm

as they indicate that the light fills the entire lens, this indicates that the object is at infinity, remember that the light of the laser rays is almost parallel, therefore p = inf
q = f = 6.0 cm
for the lens of f = 12.0 cm q = 12.0 cn
to find the size of the image we use
h ’= h q / p
where p has a high value and is the same for all systems
h ’= h / p q
Thus
f = 6 cm h ’= fo 6 cm
f = 12 cm h ’= fo 12 cm
therefore we see that the lens with the shortest focal length has a smaller object
Continue on the momentum it has. The probe will continue in the same direction it is moving because there are no forces to act against it. I think this is the answer you are looking for...?