Answer:
74,4 litros
Explanation:
Dado que
W = nRT ln (Vf / Vi)
W = 3000J
R = 8,314 JK-1mol-1
T = 58 + 273 = 331 K
Vf = desconocido
Vi = 25 L
W / nRT = ln (Vf / Vi)
W / nRT = 2.303 log (Vf / Vi)
W / nRT * 1 / 2.303 = log (Vf / Vi)
Vf / Vi = Antilog (W / nRT * 1 / 2.303)
Vf = Antilog (W / nRT * 1 / 2.303) * Vi
Vf = Antilog (3000/1 * 8,314 * 331 * 1 / 2,303) * 25
Vf = 74,4 litros
B) the plates are in constant motion and as a result the boundaries are where they interact
False because yeah jkdkdlgkdjfkekvkx
Answer:
Using the formula
V =20y/(x^2+y^2)^1/2 - 20x/(x^2+y^2)^1/2
Hence fluid speed at x axis =20x/(x^2+y^2)^1/2
While the fluid speed at y axis =20y/(x^2+y^2)^1/2
Now the angle at 1, 5
We substitute into the formula above
V= 20×5/(1+25)^1/2= 19.61
For x we have
V = 20× 1/(1+25)^1/2= 3.92
Angle = 19.61/3.92= 5.0degrees
Angel at 5, and 2
We substitute still
V = 20×5/(2+25)^1/2=19.24
At 2 we get
V= 20×2/(2+25)^1/2=7.69
Dividing we get 19.24/7.69=2.5degrees
At 1 and 0
V = 20/(1)^1/2=20
At 0, v =0
Angel at 2 and 0 = 20degrees
At 5 and 2
V = 100/(25+ 4)^1/2=18.56
At x = 2
40/(√29)=7.43
Angle =18.56/7.43 = 2.49degrees.