Answer:
Different types of isotopes are used for different materials or objects. For radiometric dating, uranium-235 is considered best for it while carbon-14 is used for dating of rocks. It is also used for dating of wood samples.
Explanation:
Carbon-14 and uranium-235 are used for different materials or objects for measuring the age of these materials. These two isotopes are radioactive in nature which means they emit gamma radiations which allow us to find the age of different objects. Carbon-14 has a low half life so it can be used for those objects which are present before thousands of years while uranium-235 is used for materials which are millions of years old due to high half life.
Q1)
firstly we need to determine the empirical formula of the compound. empirical formula is the simplest ratio of components in the compound.
percentages of the elements have been given, so lets assume we are calculating for a compound of 100g
C H O
mass 63.13 g 8.830 g 28.03 g
molar mass 12 g/mol 1 g/mol 16 g/mol
number of moles 63.13/12 8.830/1 28.03/16
5.26 8.830 1.75
divide by the smallest number of moles
5.26/1.75 8.830/1.75 1.75/1.75
= 3.01 = 5.04 =1
rounded off to the nearest whole numbers
C - 3
H - 5
O - 1
therefore empirical formula = C₃H₅O
Q2)
we have to next determine the molecular formula of the compound
molecular formula gives the actual composition of elements in the compound.
since we know the empirical formula and molecular mass, we can find how many empirical units are in the molecular formula.
mass of empirical unit = Cx3 + Hx5 + Ox1
= 12 g/mol x 3 + 1g/mol x 5 + 16 g/mol x 1
= 36 + 5 + 16 = 57 g/mol
the molecular mass = 228 g/mol
then number of empirical units in the molecular formula = 228 / 57 = 4
therefore there are 4 empirical units
then the molecular formula = 4 x empirical formula =4 (C₃H₅O)
molecular formula = C₁₂H₂₀O₄
Answer:
1
Explanation:
Physical change does not cause chemical energy.
Answer: 105 centimeters
Explanation:
1 meter = 100 centimeters
105 centimeters = 1 meter and 05 centimeters
.2510 g times 1 mol AlCl3 / 133.34 g times 3 mol Cl / 1 mol AlCl3. You should get: .005647 moles of Chloride ions.