1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saveliy_v [14]
3 years ago
13

An 18.7 g sample of platinum metal increases

Physics
1 answer:
vredina [299]3 years ago
5 0

Answer:

0.092

Explanation:

because i said sooooo

You might be interested in
A truck accelerates From being stopped to 18 m/s in 5.5 seconds. A bus accelerates from being stopped to 24 m/s in 6.0 seconds.
Mars2501 [29]

Answer:

The bus

Explanation:

a = (v-u)/t  

Where

a = acceleration

v = final velocity

u = initial velocity

t = time taken

For truck to get its acceleration,

a = (18-0)/5.5 = 3.27 ms⁻²

For bus to get its acceleration,

a = (24-0)/6 = 4 ms⁻²

As 4 > 3.27 bus has a greater acceleration.

5 0
3 years ago
The amount of diffraction that a sound wave undergoes depends on
BigorU [14]
The amount of diffraction of sound waves depends on the medium the sound wave travels to and the frequency. Diffraction happens as soon as it has been out of the source.
5 0
3 years ago
Carbon forms four ionic bonds in its compounds. t or f
Stells [14]
False, Carbon usually forms four covalent bonds.
8 0
3 years ago
Firemen are shooting a stream of water at a burning building. A high-pressure hose shoots out the water with a speed of 26.0 m/s
alekssr [168]

Answer:

a) θ = 58.3º

b) vfh = 13.7 m/s

c) g = -9.8 m/s2

d) h = 22.2 m

e) vfb = 15.5 m/s

Explanation:

a)

  • Assuming that gravity is the only influence that causes an acceleration to the water, due to it is always downward, since both directions are independent each other, in the horizontal direction, the water moves at a constant speed.
  • Since the velocity vector has a magnitude of 26.0 m/s, we can find its horizontal component as follows:
  • vₓ₀ = v * cos θ (1)
  • where θ is the angle between the water and the horizontal axis (which we define as the x-axis, being positive to the right).
  • Applying the definition of average velocity, taking the end of the hose like the origin, and making t₀ = 0, we can write the following expression:

        x_{f} = v_{ox} * t = v_{o} * cos \theta * t  (2)

  • Replacing by the givens of xf = 41.0m, t = 3.00 s, and v=26.0 m/s, we can solve for the angle of elevation θ, as follows:

        cos \theta = \frac{x_{f} }{v*t} = \frac{41.0m}{26.0m/s*3.00s} = 0.526 (3)

  • ⇒θ = cos⁻¹ (0.526) = 58.3º (4)

b)

  • At the highest point in its trajectory, just before starting to fall, the vertical component of the velocity is just zero.
  • Since the horizontal component keeps constant during all the journey, we can conclude that the speed at this point is just v₀ₓ, that we can find easily from (1) replacing by the values of v and cos θ, as follows:
  • vₓ₀ = v * cos θ = 26.0 m/s * 0.526 = 13.7 m/s. (5)

c)

  • At any point in the trajectory, the only acceleration present is due to the action of gravity, which accepted value is -9.8 m/s2 (taking the upward direction on the vertical y-axis as positive)

d)

  • Since we know the time when the water strikes the building, it will be the same for the vertical movement, so, we can use the kinematic equation for vertical displacement, as follows:

       \Delta y = v_{oy} * t - \frac{1}{2} *g*t^{2} (6)

  • Our only unknown remains v₀y, which can be obtained in the same way than the horizontal component:
  • v₀y = v * sin θ = 26.0 m/s * 0.85 = 22.1 m/s (7)
  • Replacing (7) in (6), we get:

       \Delta y = 22.1 m/s* 3.0s - \frac{1}{2} *9.8m/s2*(3.00s)^{2} = 22.2 m (8)

e)

  • When the water hits the building the velocity vector, has two components, the horizontal vₓ and the vertical vy.
  • The horizontal component, since it keeps constant, is just v₀x:
  • v₀ₓ = 13.7 m/s
  • The vertical component can be found applying the definition of acceleration (g in this case), solving for the final velocity, as follows:

       v_{fy} = v_{oy} - g*t  (9)

  • Replacing by the time t (a given), g, and  v₀y from (7), we can solve (9) as follows:

       v_{fy} = 22.1 m/s - 9.8m/s2*3.00s = -7.3 m/s  (10)

  • Since we know the values of both components (perpendicular each other), we can find the magnitude of the velocity vector (the speed, i.e. how fast is it moving), applying the Pythagorean Theorem to v₀ₓ and v₀y, as follows:

       v_{f} = \sqrt{(13.7m/s)^{2} +(-7.3m/s)^{2}} = 15.5 m/s (11)

3 0
3 years ago
Breaks in the Earths crust called faults from where plates meet true or false
KonstantinChe [14]
False theyre called plate boundries
5 0
3 years ago
Read 2 more answers
Other questions:
  • What is the closest distance the electrodes used in an NCV test can be placed on a nerve in order to measure the voltage change
    15·1 answer
  • The apparent westward movement of a planet against the background of stars is called
    12·1 answer
  • What is a superpositional principle
    7·2 answers
  • 11. You want to calculate the displacement of an object thrown over a bridge. Using -10 m/s2 for acceleration due to gravity, wh
    9·1 answer
  • An ideal monatomic gas expands from an initial pressure and volume of 32 atm and 1.0 L to a final volume of 4.0 L. The initial t
    10·1 answer
  • A blue-light photon has a wavelength of
    7·1 answer
  • the sputnik 1 satellite orbited earth (mass=5.98 x 10^24 kg) in a circle of radius 6.96 x 10^6 m. what was its orbital velocity?
    10·2 answers
  • Mario rolls a coin up a slope at 3 m/s North. It travels 8.3 m, comes to a stop and rolls back down.
    7·1 answer
  • A rocket that has a mass of 4000 lbm travels at 27,000 ft/sec. What is most nearly its kinetic energy
    12·1 answer
  • How does the composition of a comet compare with that of the Sun?.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!