How much gravitational potential energy does the block have
when it gets to the top of the ramp ?
(weight) x (height) = (15 N) x (0.2 m) = 3 Joules .
If there were no friction, you would only need to do 3 Joules of work
to lift the block from the bottom to the top.
But the question says you actually have to do 4 Joules of work
to get the job done.
Friction stole one of your Joules along the way.
Choice-4 is not the correct one.
Choice-1 is the correct one.
===========================
Notice that the mass of the block is NOT 15 kg , and you
don't have to worry about gravity to answer this question.
The formula for potential energy is (m)·(g)·(h) .
But (m·g) is just the WEIGHT, and the formula
is actually (weight)·(height).
The question GIVES us the weight of the block . . . 15 N .
So the potential energy at the top is just (15N)·(0.2m) = 3 Joules.
Answer:
new temperature of the tire will be 278.76 K
Explanation:
when the temperature increases, the particles will have greater kinetic energy and also the pressure will be increase for the gas particles.
so when the temperature increases, pressure will also increase and vice versa
T is directly proportional to P
T1 = initial temperature= 303 k
P1= Initial pressure = 325000 pa
T2= Final temperature= ?
P2= Final pressure = 299000 pa
mathematically
P1/T1= P2/T2
T2= P2 x T1/P1
T2 = 299000 x 303/ 325000= 278.76 k
Answer:
A. 58.8m/s
Explanation:
The acceleration due to gravity is 9.8 m/s², so the velocity after 6 seconds is ...
v = at
v = (9.8 m/s²)(6 s) = 58.8 m/s
Answer:
Following are the answer to this question:
Explanation:
Formula:

Calculating point A:
when the value is 




Calculating point B:
when the value is 



Calculating point C:
when the value is 




Calculating point D:
when the value is 




Calculating point E:
when the value is 



