3.74×
3.74 ×
molecules of propane were in the erlenmeyer flask.
number of moles of propane can be calculated as moles of propane.
mass of propane = 0.274 g
molar mass of propane = 44.1
So this gives us the value of 6.21×
moles of propane
No one mole of propane As a 6.0-2 × 
so, 6.21 ×
× 6. 022 × 10^23
= 3.74 ×
Therefore, molecules of propane were in the erlenmeyer flask is found to be 3.74 ×
<h3>What is erlenmeyer flask?</h3>
- A laboratory flask with a flat bottom, a conical body, and a cylindrical neck is known as an Erlenmeyer flask, sometimes known as a conical flask or a titration flask.
- It bears the name Emil Erlenmeyer after the German chemist.
<h3>What purpose does an Erlenmeyer flask serve?</h3>
- Liquids are contained in Erlenmeyer flasks, which are also used for mixing, heating, chilling, incubating, filtering, storing, and other liquid-handling procedures.
- For titrations and boiling liquids, their sloped sides and small necks make it possible to whirl the contents without worrying about spills.
To learn more about calculating total molecules visit:
brainly.com/question/8933381
#SPJ4
Answer:
Explanation:
How many mols do you have?
1 mol = 6.02 * 10^23 atoms
x mol = 6.25 * 10 ^32 atoms
1/x = 6.02*10^23 / 6.25 * 10^32 Cross multiply
6.02 * 10^23 * x = 1 * 6.25 * 10^32 Divide by 6.02 * 10^23
x = 6.25 * 10*32/ 6.02 ^10^23
x = 1.038 * 10^9 mols which is quite large.
Find the number of grams. (Use the value for copper on your periodic table. I will just use an approximate number.)\
1 mol of copper = 63 grams.
1.038 * 10^9 mols of copper = x
1/1.038 * 10^9 = 63/x Cross multiply
x = 1.038 * 10^9 * 63
x = 6.54 * 10^10 grams of copper.
Are produced 72 grams of water in this reaction.
<h3>Mole calculation</h3>
To find the value of moles of a product from the number of moles of a reactant, it is necessary to observe the stoichiometric ratio between them:

Analyzing the reaction, it is possible to see that the stoichiometric ratio is 1:2, so we can perform the following expression:



So, if there are 2 mols of Ca(OH)2:
Ca(OH)2 | H2O


Finally, just find the number of grams of water using your molar mass:


So, 72 grams are produced of water in this reaction.
Learn more about mole calculation in: brainly.com/question/2845237
Answer; relative elements are most reactive elements and compounds may ignite spontaneously or explosively. They generally burn in water as well as the oxygen in the air
Explanation: