Answer:
For any string, we use 
Explanation:
The pumping lemma says that for any string s in the language, with length greater than the pumping length p, we can write s = xyz with |xy| ≤ p, such that xyi z is also in the language for every i ≥ 0. For the given language, we can take p = 2.
Here are the cases:
- Consider any string a i b j c k in the language. If i = 1 or i > 2, we take
and y = a. If i = 1, we must have j = k and adding any number of a’s still preserves the membership in the language. For i > 2, all strings obtained by pumping y as defined above, have two or more a’s and hence are always in the language.
- For i = 2, we can take and y = aa. Since the strings obtained by pumping in this case always have an even number of a’s, they are all in the language.
- Finally, for the case i = 0, we take
, and y = b if j > 0 and y = c otherwise. Since strings of the form b j c k are always in the language, we satisfy the conditions of the pumping lemma in this case as well.
is the volume of the sample when the water content is 10%.
<u>Explanation:</u>
Given Data:

First has a natural water content of 25% =
= 0.25
Shrinkage limit, 

We need to determine the volume of the sample when the water content is 10% (0.10). As we know,
![V \propto[1+e]](https://tex.z-dn.net/?f=V%20%5Cpropto%5B1%2Be%5D)
------> eq 1

The above equation is at
,

Applying the given values, we get

Shrinkage limit is lowest water content

Applying the given values, we get

Applying the found values in eq 1, we get


Answer:
it depends on the but i would recommend check in the front next to the turbo intake.
Answer:
Step On: Your foot forces the clutch pedal down and then causes it to take up the slack. This, in turn, causes the clutch friction disk to slip, creating heat and ultimately wearing your clutch out.
Step Off: When the clutch pedal is released, the springs of the pressure plate push the slave cylinder's pushrod back, which forces the hydraulic fluid back into the master cylinder.