The correct answer is option B. When the forward and reverse paths of a change occur at the same rate, <span>the system is in equilibrium specifically in dynamic equilibrium.</span> Dynamic equilibrium is
the balance in a process that is continuing. It is achieved in a reaction when
the forward rate of reaction and the backward rate of reaction is at the same
value or equal.
In this problem, we need to use the ideal gas law. The following is the formula used in ideal gas law: PV = nRT, where n refers to the moles and R is the gas constant.
Given
P = 10130.0 kPa
V = 50 L
T = 300 degree celcius + 273.15 = 573.15 K
R = 8.314 L. kPa/K.mol
Solution
To get the moles which represent the "n" in the formula, we need to rearrange the equation.
PV = nRT PV
---- ------ ---> n = --------
RT RT RT
10130.0 kPa x 50 L
n= ---------------------------------------------
8.314 L. kPa/K.mol x 573.15 K
506,500
= ----------------------------
4,765.17 mol K
=106.29 mol Ar
So the moles of argon gas is 106.29 moles
<span>C) <u>Colloids</u></span><span>
Colloids have small non-dissolved particles that flow around in the mixture. These particles do not settle over time. When a light is shined on colloids the scattering characteristic of the Tyndall effect are visable.</span>
Answer:
A. Intramolecular interactions are generally stronger.
B. a. Only intermolecular interactions are broken when a liquid is converted to a gas.
Explanation:
<em>A. Which is generally stronger, intermolecular interactions or intramolecular interactions?</em>
Intramolecular interactions, in which electrons are gained, lost or shared, constitute true bonds and are one or two orders of magnitude stronger than intermolecular interactions.
<em>B. Which of these kinds of interactions are broken when a liquid is converted to a gas?</em>
When a liquid vaporizes, the intermolecular attractions are broken, that is, molecules get more separated. However, true bonds are not broken which is why the molecules keep their chemical identity.
Answer: Chosen landforms are:
1) Hill
2) Mountain
3) Plateau
4) Valley
Explanation:
1) Hill is an elevated location smaller than a mountain. Location: Land
2) Mountain is a large mass of earth and rock, rising above the common level of the earth or adjacent land, usually given by geographers as above 1000 feet in height (or 304.8 metres).
Location: Land or Water
3) Plateau is a largely level expanse of land at a high elevation. It is also known as tableland.
Location: Land
4) Valley is an elongated depression between hills or mountains, often with a river flowing through it.
Location: Land or Water