The first part of the microscope that should first be used to adjust the focus when starting with the lowest power lens would be the coarse adjustment knob.
There are two knobs in a typical light microscope with which objects on slides can be brought into focus:
- Coarse adjustment knob
- Fine adjustment knob
The 2 knobs are used to adjust the stage to either bring it up towards the objective lens or down away from them. The coarse adjustment knob, however, moves the stage a considerable distance with each turn. The fine adjustment knob, on the other hand, only moves the stage very little with each turn.
The lowest power lenses are often short. Hence, using the coarse adjustment knob is ideal in order to quickly bring objects on slides into focus.
The fine adjustment knob comes highly recommended at high objectives because high objectives lenses are usually long and using the coarse adjustment knob can lead to a breakage of the slide by the lens.
More on bringing objects into focus on a microscope can be found here: brainly.com/question/24319677
Explanation:
you add the from head to tail. Head is the triangle and tail is the final point of the vector
Answer:

Explanation:
The energy lost due to air friction is equal to the mechanical energy lost by the parachutist during the fall.
The initial mechanical energy of the parachutist (at the top) is equal to his gravitational potential energy:

where
m = 20.1 kg is his mass
is the acceleration due to gravity
h = 662 m is the initial heigth
The final mechanical energy (at the bottom) is equal to his kinetic energy:

where
v = 7.12 m/s is the final speed of the parachutist
Therefore, the energy lost due to air friction is:

I think the answer is:
B) oceanic crust-continental crust
Answer:
0.49m
Explanation:
So you need to change the original equation for finding fields to find distance, and then just plug in the numbers
Which equals 0.49meters
Also it was right on Acellus :)
Hope this helps