<span>Social
i think so ,but i am not sure</span>
I think you forgot to give the choices along with the question. I am answering the question based on my knowledge and research. You would increase mechanical advantage by <span>making the blade longer from the cutting edge. I hope that this is the answer that has actually come to your desired help.</span>
The pulley is really a wheel and axle with a rope or chain attached. A pulley makes work seem easier because it changes the direction of motion to work with gravity. Let's say you have to lift a heavy load, like a bale of hay, up to the second floor of a barn. You could tie a rope to the bale of hay, stand on the second floor, and pull it straight up. Or you could put a pulley at the second floor, stand at the first floor, and lift the bale of hay by pulling straight down. It would be the exact amount of work in either case, but the action of pulling down feels easier because you're working with the force of gravity.
A pulley really saves effort when you have more than one pulley working together. By looping a rope around two, three, or even four pulleys, you can really cut down on the effort needed to lift something. The trade-off? Well, as you increase the number of pulleys, you also increase the distance you have to pull the rope. In other words, if you use two pulleys, it takes half the effort to lift something, but you have to pull the rope twice as far. Three pulleys will result in one-third the effort — but the distance you have to pull the rope is tripled!
Answer:
Here are all the possible meanings and translations of the word gravitational energy. Gravitational energy is the potential energy associated with the gravitational field. This phrase is found frequently in scientific writings about quasars and other active galaxies. Quasars generate and emit their energy from a very small region.
Explanation:
To solve this problem we will apply the concepts related to the electric field. This is defined as the product between the angular frequency, the number of turns of the body (solenoid in this case) the magnetic field and the sine of the angular frequency and time. Mathematically this can be described as

Here,
= Angular frequency
N = Number of turns
B = Magnetic field
The emf has its maximum value when 
Thus the amplitude of the emf is

When number of turns of armature, area and applied magnetic field remains constant, induced emf is proportional to angular speed.

Further it can be written as follows,




Therefore the maximum amplitude of induced emf when armature rotates at 10.0rad/s is 18V