6 sodium and 6 Bromine in 6NaBr
<u>Given:</u>
Calculated density values-
Aluminum = 2.7 g/cm3
Copper = 9.0 g/cm3
Iron = 7.9 g/cm3
Titanium = 4.8 g/cm3
Unknown sample mass = 9.5 g
Sample volume = 2.1 cm3
<u>To determine:</u>
The identity of the unknown sample
<u>Explanation:</u>
'Density' is a physical parameter which can be used to identify the nature of the unknown substance.
Density = Mass/Volume
For the unknown sample
Density = 9.5 g/2.1 cm3 = 4.52 g/cm3
This matches closely with the calculated density of titanium
Ans: The unknown substance is made of titanium
Answer:
The balanced equation for this reaction is C2H2 + 502 + 4H2O + 3C02. What volume of carbon dioxide is produced when 2.8 L of oxygen are consumed? 25Explanation:
Answer : The formula for each of the following is:
(a) 
(b) 
(c) 
Explanation :
- Alkanes are hydrocarbon in which the carbon atoms are connected with single covalent bonds.
The general formula of alkanes is
where n is the number of the carbon atoms present in a molecule of alkane.
- Alkenes are hydrocarbon in which the carbon atoms are connected with double covalent bonds.
The general formula of alkenes is
where n is the number of the carbon atoms present in a molecule of alkene.
- Alkynes are hydrocarbon in which the carbon atoms are connected with triple covalent bonds.
The general formula of alkynes is
where n is the number of the carbon atoms present in a molecule of alkyne.
(a) An alkane with 22 carbon atoms
Putting n = 22 in the general formula of alkane, we get the formula of alkane as,
or 
(b) An alkene with 17 carbon atoms
Putting n = 17 in the general formula of alkene, we get the formula of alkene as,
or 
(c) An alkyne with 13 carbon atoms
Putting n = 13 in the general formula of alkyne, we get the formula of alkyne as,
or 