1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
7

How does concurrent engineering speed up product development?

Engineering
1 answer:
Ne4ueva [31]3 years ago
3 0

Answer:

By involving multiple disciplines in decision making and planning, concurrent engineering has made product development more cost and time efficient. The fact that concurrent engineering could result in faster time-to-market is already an important advantage in terms of a competitive edge over other producers.

Explanation:

You might be interested in
What is a network? I'LL MARK BRAINLEST
Jobisdone [24]

Answer:

hsjeeieoj eu sou ku nahi u have UCC guide to buying it and I he was a temporary password for bees and u h ki tarah nahi to ye sab se jyada nahi hota nahi to kabhi bhi hai ki wo to sirf Tum nahi hota

7 0
3 years ago
Read 2 more answers
Which of the following is the next “up-and-coming” digital publishing industry?
storchak [24]

Answer:

3D printing

Explanation:

The developments in technology, infrastructure, systems and technology mean that 3D printing will soon become a production technology. The market penetration of 3D printing would inevitably rise over time, with certain categories almost completely transitioning to 3D printing, such as digital publishing.

6 0
3 years ago
Explain the difference, on the basis of the test results, between the ultimate strength and the "true" stress at fracture.
gayaneshka [121]

Answer / Explanation:

On the basis of the test result, Ultimate strength which is mostly known as the ultimate tensile strength is the strength attached to the ability or capacity of a structural element or material used in the test to withstand elongation forces or pull force applied to it.  

WHILE,

True stress at fracture can be classified as stress or load associated to the point where yielding or fracture occurred divided by the cross-sectional area at the yield point.

5 0
3 years ago
HELP HELP HELP
Fantom [35]

Summary

Students learn about the variety of materials used by engineers in the design and construction of modern bridges. They also find out about the material properties important to bridge construction and consider the advantages and disadvantages of steel and concrete as common bridge-building materials to handle compressive and tensile forces.

This engineering curriculum aligns to Next Generation Science Standards (NGSS).

Engineering Connection

When designing structures such as bridges, engineers carefully choose the materials by anticipating the forces the materials (the structural components) are expected to experience during their lifetimes. Usually, ductile materials such as steel, aluminum and other metals are used for components that experience tensile loads. Brittle materials such as concrete, ceramics and glass are used for components that experience compressive loads.

Learning Objectives

After this lesson, students should be able to:

List several common materials used the design and construction of structures.

Describe several factors that engineers consider when selecting materials for the design of a bridge.

Explain the advantages and disadvantages of common materials used in engineering structures (steel and concrete).

Educational Standards

NGSS: Next Generation Science Standards - Science

Common Core State Standards - Math

International Technology and Engineering Educators Association - Technology

State Standards

Suggest an alignment not listed above

Subscribe

Get the inside scoop on all things TeachEngineering such as new site features, curriculum updates, video releases, and more by signing up for our newsletter!

PS: We do not share personal information or emails with anyone.

Email Address

First name (optional)

Last Name (optional)

Subscribe to TE Newsletter

Worksheets and Attachments

Strength of Materials Worksheet (doc)

Strength of Materials Worksheet (pdf)

Strength of Materials Worksheet Answers (doc)

Strength of Materials Worksheet Answers (pdf)

Strength of Materials Math Worksheet (doc)

Strength of Materials Math Worksheet (pdf)

Strength of Materials Math Worksheet Answers (doc)

Strength of Materials Math Worksheet Answers (pdf)

More Curriculum Like This

MIDDLE SCHOOL Activity

Breaking the Mold

Explanation:

pabrainlest Poe ty

8 0
3 years ago
g . 3. For each of the following statements Write the statement as an English sentence that does not use the symbols for quan 2.
lubasha [3.4K]

Answer:

(a)

( ∃x ∈ Q) ( x > √2)

There exists a rational number x such that x > √2.

( ∀x ∈ Q) ( ( x ≤ √2)

For each rational number x,  x ≤ √2.

(b)

(∀x ∈ Q)(x² -  2 ≠ 0).

For all rational numbers x, x² -  2 ≠ 0

( ∃x ∈ Q ) ( x² - 2 = 0 )

There exists a rational number x such that  x² -  2 = 0

(c)

(∀x ∈ Z)(x is even or x is odd).

For each integer x, x is even or x is odd.

( ∃x ∈ Z ) (x is odd and x is even)

There exists an integer x such that x is odd and x is even.

(d)

( ∃x ∈ Q) ( √2 < x < √3 )

There exists a rational number x such that √2 < x < √3

(∀x ∈ Q) ( x ≤ √2 or x ≥ √3 )

For all rational numbers x,  x ≤ √2 or x ≥ √3.

3 0
3 years ago
Other questions:
  • 4) Determine fatigue correction factors for the 0.4 inch DIA shaft from H04 using ground normailzed 4140 steel. The shaft is in
    6·1 answer
  • Air enters a tank through an area of 0.2 ft2 with a velocity of 15 ft/s and a density of 0.03 slug/ft3. Air leaves with a veloci
    5·1 answer
  • What makes building an airplane while flying so difficult?
    5·1 answer
  • PLEASE HELP! ASAP!!!!
    6·1 answer
  • Ashworth Lesson 2: Careers for mechanics and technicians exam
    14·1 answer
  • Witch part of the testing and evaluation stage of designing a PDA
    9·1 answer
  • 23 PM Sat Apr 10
    7·1 answer
  • A 1/4 inch 16 UNC bolt is tumed by a 8-inch wrench a robotic arm.
    9·1 answer
  • A 35 ft long solid steel rod is subjected to a load of 8,000 lb. This load causes the rod to stretch 0.266 in. The modulus of el
    9·1 answer
  • Hi, everyone I'm a high school student in Texas. My engineering teacher is asking us to find an active engineer to complete a li
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!