Answer:
6.14 s
Explanation:
The time the rocket takes to reach the top is only determined from its vertical motion.
The initial vertical velocity of the rocket is:

where
u = 100 m/s is the initial speed
is the angle of launch
Now we can apply the suvat equation for an object in free-fall:

where
is the vertical velocity at time t
is the acceleration of gravity
The rocket reaches the top when

So by substituting into the equation, we find the time t at which this happens:

Answer:21.18 m
Explanation:
Given
initial speed u=10 m/s
height of building h=22 m
time taken to complete 22 m

initial vertical velocity =0



Horizontal Distance moved



Answer:the
8/9 h
Explanation:
Height = 1/2 a T^2 now change to T/3
now height = 1/2 a (T/3)^2 =<u> 1/9</u> 1/2 a T^2 <===== it is 1/9 of the way down or 8/9 h
Answer: 14.1 m/s
Explanation:
We can solve this with the Conservation of Linear Momentum principle, which states the initial momentum
(before the elastic collision) must be equal to the final momentum
(after the elastic collision):
(1)
Being:


Where:
is the combined mass of Tubby and Libby with the car
is the velocity of Tubby and Libby with the car before the collision
is the combined mass of Flubby with its car
is the velocity of Flubby with the car before the collision
is the velocity of Tubby and Libby with the car after the collision
is the velocity of Flubby with the car after the collision
So, we have the following:
(2)
Finding
:
(3)
(4)
Finally:
The right answer is c because it absorbs the heat then it pushes it away like radiation