From the information given, The mass of the bowling ball is 8 Kilograms and the momentum with which it is moving is 16 kg m/s.
We use the formula p = m × v
Where p is the momentum, m is the mass and v is the velocity.
We need velocity so we rewrite the equation thus:
P = mv, therefore p/m = v or v = p/m
In our case p = 16 and m = 8
v = p/m
v = 16/8
v = 2
Therefore the bowling ball is travelling at 2m/s
Your answer for this question is the third option.
Answer:
5.25 m
Explanation:
Given;
The height equation h;
h=-x^2+3x+3
Where;
h = the height above water
x = horizontal distance from the end of the board
The maximum height is at h' = 0, when change in h with respect to change in x is equal to zero.
differentiating the equation h.
dh/dx = h' = -2x + 3 = 0
Solving for x;
2x = 3
x = 3/2
Substituting into the function h;
h max = -x^2+3x+3
h max = -(3/2)^2 + 3(3/2) +3 = -9/4 +9/2 +3 = 9/4 + 3 =
h max = 21/4 = 5.25 m
It is the subtance betwen the person or the object