Answer:
0.5 or 1/2
Step-by-step explanation
I dont know if they want the answer in fraction form.
Using substitution:
first you have to express one variable in terms of the other, in this we can express y in terms of x:

Since both expressions are equal to y, you have to equal both expressions like this:

Now you can solve the equation:

Knowing x=10, you can use any of the expressions we found before to find y. In this case I'm going to use y= -x+9 because it's simpler but boy should give you the same result

So, the answer is x=10 and y=-1
Answer:
A. 23+(6-1)x-3
B. 93
Step-by-step explanation:
a) Nth term = F + (N - 1) x D, where F=First term, N=Number of terms, D=Common difference
6th row = 23 + (6 - 1) x -3
= 23 + (5) x -3
= 23 + (-15)
= 8 - number of boxes in the top row.
b) Sum = N/2[2F + (N - 1) x D]
= 6/2[2*23 + (6 - 1) x -3]
= 3 [46 + (5) x -3 ]
= 3 [46 + -15 ]
= 3 [ 31 ]
= 93 - total number of boxes in the entire display.
Hope this helps! Its 3:25 AM for me too so I know how you feel.
Answer: Answers are in the steps read carefully!
Step-by-step explanation:
A) 3x^2 - 7x + 2 To factor this polynomial, you have to find two numbers that their product is 6 and their sum is -7. The numbers -1 and -6 works out because -6 times -1 is 6 and -6 plus -1 is -7.
Now rewrite the polynomial as
3x^2 - 1x - 6x + 2 Now group it
(3x^2 - 1x) (-6x+2) Factor it by groups
x (3x -1) -2(3x -1) Now factor out 3x-1
(3x -1) (x-2) Done!
B) 2x^2 - x -3 Now the same way.You will have two numbers that their product is -6 and their sum is -1. You may be wondering how I get -6 .I get -6 by multiply the leading coefficient 2 by the constant -3. The numbers -3 and 2 works out. Because -3 times 2 is -6 and -3 plus 2 is -1.
Rewrite the polynomial as
2x^2 +2x - 3x -3 GRoup them and factor them
(2x^2 + 2x) (-3x-3)
2x(x+1) -3(x+1) Factor out x+1
(x+1) (2x -3) Done!
C) 3x^2 - 16x - 12 Find two numbers that their product is -36 and their sum is -12. The numbers -18 and 2 works out because -18 times 2 is -36 and -18 plus 2 is -16.
Rewrite the polynomial
3x^2 +2x -18x - 12 GRoup them
(3x^2 + 2x) (-18x - 12) Factor them
x (3x +2) -6(3x +2) Factor out 3x+2
(3x+2) (x -6) Done !