<h3><u>Answer</u>;</h3>
$347.22
<h3><u>Explanation</u>;</h3>
Principal = $14,200
Rate = 8.5%
Time = 105 days = 105/365
Interest = Principal x Rate x Time
Interest = 14,200 x 0.085 x 105/365
Interest = 347.219
= $347.22
Answer:
heterotrophs
Explanation:
According to the parameters established by biology, all living beings that require others to feed themselves are considered heterotrophs, that is, they are not able to produce their food within their organism but rather they must consume elements of nature already constituted as food, already synthesized by other organisms. Among the most prominent heterotrophs, all animals, bacteria and humans stand out.
The term heterotroph comes from the Greek, language in which the prefix hetero means different and trophies means food. In this way, the heterotroph is one that feeds on elements other than one, which takes elements from nature, from the surrounding space to feed. While autotrophic beings have the ability to synthesize inorganic elements such as light, water, carbon dioxide and convert them into food; Heterotrophic beings do not have that capacity, so they must consume plants (in the case that they are herbivores) or animals that have already consumed those plants (that is, in the case that they are carnivorous). In other words, animals and humans always need to feed on other living beings, they could never do so only from inorganic elements such as water.
Sattelites don't need any fuel to stay in orbit. The applicable law is...."objects in motion tend to stay in motion". Having reached orbital velocity, any such object is essentially "falling" around the earth. Since there is no (or at least very little) friction in the vacuum of space, the object does not slow.... It simply continues.
Sattelites in "low" earth orbit do encounter some friction from the very thin upper atmosphere, and they will eventually "decay".
:)
Answer:
C = 1.01
Explanation:
Given that,
Mass, m = 75 kg
The terminal velocity of the mass, 
Area of cross section, 
We need to find the drag coefficient. At terminal velocity, the weight is balanced by the drag on the object. So,
R = W
or

Where
is the density of air = 1.225 kg/m³
C is drag coefficient
So,

So, the drag coefficient is 1.01.
Answer:
The purpose of report : Reports communicate information which has been compiled as a result of research and analysis of data and of issues .