Explanation:
The valence electrons within an atom is the number of electrons in its outermost shell.
These electrons are used by an atom to react with one another. They determine the extent to which an atom is ready to combine either by losing, gaining or sharing these electrons.
- Every atom desires to have a completely filled outermost shell.
- Only the elements in group 8 have a complete octet.
- The need to attain stability is driven by the number of electrons in their valence shell.
- Therefore, some atoms are very reactive.
- Those needing one electrons to complete their octet and also those that must lose one electron are very reactive.
D would be your best bet because evaporation occurs when water is heated, it then vibrates and then magic!
37.8 g CH2Br2 X (1 mol CH2Br2 / 173.83 g) = 4.60X10^-3 mol CH2Br2
<span>4.60X10^-3 mol CH2Br2 X (2 mol Br / 1 mol CH2Br2) X 6.02X10^23 atoms/mol = 5.54X10^21 bromine atoms.
I think this is the answer.</span>
Q1)
we can use the ideal gas law equation to find the total pressure of the system ;
PV = nRT
where P - pressure
V - volume - 7 x 10⁻³ m³
n - number of moles
total number of moles - 0.477 + 0.265 + 0.115 = 0.857 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in K - 273 + 25 °C = 298 K
substituting the values in the equation
P x 7 x 10⁻³ m³ = 0.857 mol x 8.314 Jmol⁻¹K⁻¹ x 298 K
P = 303.33 kPa
1 atm = 101.325 kPa
Therefore total pressure - 303.33 kPa / 101.325 kPa/atm = 2.99 atm
Q2)
partial pressure is the pressure exerted by the individual gases in the mixture.
partial pressure for each gas can be calculated by multiplying the total pressure by mole fraction of the individual gas.
total number of moles - 0.477 + 0.265 + 0.115 = 0.857 mol
mole fraction of He -

mole fraction of Ne -

mole fraction of Ar -

partial pressure - total pressure x mole fraction
partial pressure of He - 2.99 atm x 0.557 = 1.67 atm
partial pressure of Ne - 2.99 atm x 0.309 = 0.924 atm
partial pressure of Ar - 2.99 atm x 0.134 = 0.401 atm
An ionic compound is made up of two or more metals and non-metals
A covalent compound is made up of two or more non-metals.
Therefore calcium (non-metal) and chlorine(non-metal) make up a covalent compound