Answer:
Any point on the circle (x + 1)² + (y - 5)² = 2 with center (-1 , 5) and radius √2
Step-by-step explanation:
circle: (x + 1)² + (y - 5)² = 2
(not <em>a</em> or not <em>b</em>) implies <em>c</em> <==> not (not <em>a</em> or not <em>b</em>) or <em>c</em>
so negating gives
not [(not <em>a</em> or not <em>b</em>) implies <em>c</em>] <==> not[ not (not <em>a</em> or not <em>b</em>) or <em>c</em>]
which we can simplify somewhat to
not (not (not <em>a</em> or not <em>b</em>)) and not <em>c</em>
(not <em>a</em> or not <em>b</em>) and not <em>c</em>
(not <em>a</em> and not <em>c</em>) or (not <em>b</em> and not <em>c</em>)
not (<em>a</em> or <em>c</em>) or not (<em>b</em> or <em>c</em>)
not ((<em>a</em> or <em>c</em>) and (<em>b</em> or <em>c</em>))
not ((<em>a</em> and <em>b</em>) or <em>c</em>)
Answer:
y = -
x - 3
Step-by-step explanation:
The equation of a line in slope- intercept fprm is
y = mx + c ( m is the slope and c the y- intercept )
y = 3x + 7 is in slope- intercept form
with slope m = 3
Given a line with slope m then the slope of a line perpendicular to it is
= -
= -
, thus
y = -
x + c ← is the partial equation of the perpendicular line
To find c substitute (3, - 4) into the partial equation
- 4 = - 1 + c ⇒ c = - 4 + 1 = - 3
y = -
x - 3 ← equation of perpendicular line
(15p⁺⁴.q⁻⁶) /(-20p⁻¹².q⁻³).
Remember that a⁻ⁿ = 1/aⁿ and 1/a⁻ⁿ = aⁿ
(-15/4).(p⁻⁴.q⁻⁶)(p⁺¹².q⁺³).
(-15/20).(p⁻⁴.p¹².q⁻⁶.q³)
Remember aⁿ.aˣ = aⁿ⁺ˣ
(-15/20).(p⁸.q⁻³)
-3/5(p⁸.q⁻³)