1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
creativ13 [48]
3 years ago
6

Plzzz answer !!!! Answer ASAP plz , would appreciate that

Mathematics
1 answer:
sertanlavr [38]3 years ago
4 0
38.7 feet per second
You might be interested in
A light bulb is designed by revolving the graph of:
nadya68 [22]

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

5 0
3 years ago
26 was divided by a power of ten to get 0.26. What power of ten was it divided by?
Inga [223]

100

I got the answer by 26 divided by 0.26

3 0
3 years ago
You order from a catalog the following office supplies: 10 boxes of paper, each box is 6 pounds and 36 boxes of pens, each box w
babymother [125]

$40.50 10 boxes at 6lbs = 60lbs

             36 boxes at 12 ounces = 432 ounces dived by 16(16 oz in a lbs)= 27 lbs

             60 lbs plus 27 lbs = 87 lbs total weight

 87lbs - 20lbs($12)= 67lbs - 30 lbs($10)= 37lbs x .50($.50 per pound)= $18.50

$12+$10+$18.50= $40.50

6 0
2 years ago
Prove that if a is a natural number, then there exist two unequal natural numbers k and l for which ak−al is divisible by 10.
EastWind [94]
Assume a is not divisible by 10. (otherwise the problem is trivial). 
<span>Define R(m) to be the remainder of a^m when divided by 10. </span>
<span>R can take on one of 9 possible values, namely, 1,2,...,9. </span>
<span>Now, consider R(1),R(2),......R(10). At least 2 of them must have the sames value (by the Pigeonhole Principle), say R(i) = R(j) ( j>i ) </span>
<span>Then, a^j - a^i is divisible by 10.</span>
8 0
3 years ago
Read 2 more answers
HURRY PLEASE When 5 and 6 are multiplied by the same factor, how do the ratios compare to the ratio 5:6? The ratios are equivale
erma4kov [3.2K]

Answer:

The ratios are equivalent.

Step-by-step explanation:

If you multiply both 5 and 6, the ratio stays the same.

5:6 = 10:12 = 15:18 = 20:24 etc.

You can try this by dividing the larger number by the smaller number. You'll always get 1.2 as the "relationship", or ratio, is preserved.

24/20 = 1.2

15/18 = 1.2

10/12 = 1.2

6/5 = 1.2

6 0
2 years ago
Other questions:
  • Compare 7 x 103 and 5 x 102. A) 7 x 103 is 14 times larger than 5 x 102. B) 7 x 103 is 4 times larger than 5 x 102. C) 7 x 103 i
    5·1 answer
  • Why does the inequality sign have to be flipped when multiplying and dividing by a negative number like in −2x &gt; 10?
    10·1 answer
  • If the composite functions f(g(x)) and g(f(x)) equal x then the function g is the __________ function of ff.
    5·1 answer
  • Please help if you can. It’s a math problem, and please explain
    13·2 answers
  • How do you solve for x in the equation 4x-2(x-2)=-9+5x-8
    13·1 answer
  • X + y ≥ 3 <br> 5x + 2y &lt; 10
    5·1 answer
  • Help with question pls!! Marking brainliest
    13·1 answer
  • Can somebody shade this for me? Thanks so much!
    13·2 answers
  • X/5=y/3 and 12/y=4/5 <br> What is x and what is y?
    5·1 answer
  • Another question I hate school​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!