Answer:
a definite to indefinite
Explanation:
because if it is in liquid the volume is trusted,but if it is in gas the volume would have multiplied
i think u can pit it well
I would always start by balancing your carbons, and then balancing the rest from there.
1. C2H5OH + O2 —> CO2 + H2O - You have two carbons on the left and one on the right. Multiply CO2 by 2.
C2H5OH + O2 —> 2CO2 + H2O
Now balance hydrogen. You have 6 on the left and 2 on the right. Multiply H2O by 3.
C2H5OH + O2 —> 2CO2 + 3H2O
Now balance oxygen. You have 3 on the left and 7 on the right. You need 4 more on the left. Don’t multiply the C2H5OH by anything because that will change the numbers of everything else too. Multiply O2 by 3 instead.
C2H5OH + 3O2 —> 2CO2 + 3H2O
Check that all atoms are now balanced, and you’re good.
2. Same process as before.
First carbons - C3H8 + O2 —> 3CO2 + H2O
Then hydrogens - C3H8 + O2 —> 3CO2 + 4H2O
Then oxygens - C3H8 + 5O2 —> 3CO2 + 4H2O
3. Same again.
Carbons) C6H12O6 + O2 —> 6CO2 + H2O
Hydrogens) C6H12O6 + O2 —> 6CO2 + 6H2O
Oxygens) C6H12O6 + 6O2 —> 6CO2 + 6H2O
4. The general reaction for a combustion reaction is a hydrocarbon reacting with oxygen to produce carbon dioxide and water.
The reaction equation is:
Li + Br → LiBr
39 grams of Li = 39 / 7 = 5.57 moles of lithium
41.5 grams of Br = 41.5 / 80 = 0.52 mole of bromine
I think the answer is [Xe] 6s2
Answer:
pH = 12.80
[H3O+] = 1.58 * 10^-13 M
[OH-] = 0.063 M
Explanation:
Step 1: Data given
pOH = 1.20
Temperature = 25.0 °C
Step 2: Calulate pH
pH + pOH = 14
pH = 14 - pOH
pH = 14 - 1.20 = 12.80
Step 3: Calculate hydronium ion concentration
pH = -log[H+] = -log[H3O+]
12.80 = -log[H3O+]
10^-12.80 = [H3O+] = 1.58 * 10^-13 M
Step 4: Calculate the hydroxide ion concentration
pOH = 1.20 = -log [OH-]
10^-1.20 = [OH-] = 0.063M
Step 5: Control [H3O+] and [OH-]
[H3O+]*[OH-] = 1* 10^-14
1.58 *10^-13 * 0.063 = 1* 10^-14