Answer:
Speed of light
Explanation:
The famous Einstein's equation is:

where
E is the energy
m is the mass
is the speed of light
In this equation, Einstein summarized the following fact: mass can be converted into energy, and the amount of energy released in such a process is given by the equation.
An example of application of this equation is the nuclear fusion process. In a nuclear fusion, two lighter nuclei combine into a heavier nucleus. However, the mass of the heavier nucleus is slightly less than the sum of the masses of the two original nuclei: some of the mass of the original nuclei has been converted into energy, accorging to the previous equation.
Never too early to start searching. Do some research about student savings versus parent savings though. If a student has savings, they will make you use it to pay for college, while the same amount of savings in the parents name may be exempt. Check it out.
Answer:
Series
Explanation:
Because I listen to my science teacher
Answer:
3. 0.5 sec.
Explanation:
A bullet fired horizontally follows a projectile motion, which consists of two independent motions:
- A horizontal motion with constant speed
- A vertical motion with constant acceleration, g = 9.8 m/s^2, towards the ground
The time taken for the bullet to reach the ground can be calculated just by considering the vertical motion:

where y is the vertical position at time t, h is the initial height, and
is the initial vertical velocity of the bullet.
Since the bullet is fired horizontally,
. So the equation becomes

And the time that the bullet takes to reach the ground can be found by requiring y=0 and solving for t:

As we can see, in this equation there is no dependance on the initial speed of the bullet: therefore, if the bullet is fired still horizontally but with a different speed, it will still take the same time (0.5 s) to reach the ground.
The distance the object travels