A. The cliff was 30.7 m high
B. I also got 9.5 as the horizontal distance
Here is my work, I find making charts like this one to find knowns and unknowns can be helpful
Answer:
The acceleration is 
Explanation:
From the question we are told that
The lift up speed is 
The distance covered for the take off run is 
Generally from kinematic equation we have that

Here u is the initial speed of the aircraft with value 0 m/ s give that the aircraft started from rest
So

=> 
Complete Question
A thin, horizontal, 12-cm-diameter copper plate is charged to 4.4 nC . Assume that the electrons are uniformly distributed on the surface. What is the strength of the electric field 0.1 mm above the center of the top surface of the plate?
Answer:
The values is 
Explanation:
From the question we are told that
The diameter is 
The charge is 
The distance from the center is 
Generally the radius is mathematically represented as

=> 
=> 
Generally electric field is mathematically represented as
![E = \frac{Q}{ 2\epsilon_o } [1 - \frac{k}{\sqrt{r^2 + k^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7BQ%7D%7B%202%5Cepsilon_o%20%7D%20%5B1%20-%20%5Cfrac%7Bk%7D%7B%5Csqrt%7Br%5E2%20%2B%20%20k%5E2%20%7D%20%7D%20%5D)
substituting values
![E = \frac{4.4 *10^{-9}}{ 2* (8.85*10^{-12}) } [1 - \frac{(1.00 *10^{-4})}{\sqrt{(0.06)^2 + (1.0*10^{-4})^2 } } ]](https://tex.z-dn.net/?f=E%20%3D%20%20%5Cfrac%7B4.4%20%2A10%5E%7B-9%7D%7D%7B%202%2A%20%288.85%2A10%5E%7B-12%7D%29%20%7D%20%5B1%20-%20%5Cfrac%7B%281.00%20%2A10%5E%7B-4%7D%29%7D%7B%5Csqrt%7B%280.06%29%5E2%20%2B%20%20%281.0%2A10%5E%7B-4%7D%29%5E2%20%7D%20%7D%20%5D)

C. have similar properties
(this is because they have the same number of electrons in the outer orbital)