Answer:
Explanation:
The sun is made up of 6 parts. Namely:
- The core
- The radiation zone
- The convection zone
- The photosphere
- The chromosphere and
- The corona
The convection area is just above the radiation zone. As materials from the suns core are heated, they rise above the radiation zone towards the EDGE of the convection area then sinks back again into the radiative zone for more heat.
The radiative zone is 12.6 million Fahrenheit hot and is just above the core.
The core of the son is not solid but plasma whose motion is like gas. Its temperature stands at 48 million Fahrenheit
Cheers
These are the correct solutions:
It is 11 a.m. in the Eastern Time Zone; therefore, it is 8 a.m. in the Pacific Time Zone. (3 hrs behind)
It is 3 p.m. in the Central Time Zone; therefore, 2 p.m. in the Mountain Time Zone. (1 hr behind)
It is 6 p.m. in the Pacific Time Zone; therefore, it is 4 p.m in Hawaii. (2 or 3 hours behind depending on time of year)
It is 6 p.m. in Hawaii; therefore, it is 11 p.m. in the Eastern Time Zone (5 or 6 hours behind depending on time of year).
It is 3 p.m. in Hawaii; therefore, it is 6 p.m. in the Mountain Time Zone (3 or 4 hours behind depending on time of year).
It is false. The effect of freezing is almost the exact opposite
<h3>
Answer:</h3>
Input work
<h3>
Explanation:</h3>
Concept being tested: Efficiency of machines
Therefore we need to know what is the efficiency of a machine
- Efficiency of a machine is the ratio of work output of machine to the work input expressed as a percentage.
Efficiency = (Work output ÷ Work input) × 100%
- Therefore, if the work input is equal to the work output then the efficiency of the machine will be 100%.
- Most machines are not 100% efficient due to loss of energy in form of heat due to friction of the moving parts of the machine.
Answer:
Part(a): The frequency is
.
Part(b): The speed of the wave is
.
Explanation:
Given:
The distance between the crests of the wave,
.
The time required for the wave to laps against the pier, 
The distance between any two crests of a wave is known as the wavelength of the wave. So the wavelength of the wave is
.
Also, the time required for the wave for each laps is the time period of oscillation and it is given by
.
Part(a):
The relation between the frequency and time period is given by

Substituting the value of
in equation (1), we have

Part(b):
The relation between the velocity of a wave to its frequency is given by

Substituting the value of
and
in equation (2), we have
