Answer:
You have a displacement of 5 units to the right.
Explanation:
First you go three to the right which lands on the 3 mark. Then you move it 4 to the left which substracts 4, landing the object at -1. Finally you move 6 to the right, and you finish at marker 5. Since displacement is not total distance but just final distance from the start point directly to end point, it is only a displacement of 5.
The solution for this problem is:
If they feel 50% of their weight that means that the
centripetal force is also 50% of their weight 1g - 0.5g = 0.5g
Then 0.5* 9.8m/s² * 18m = 88.2 would be v²
Then get the square root, the answer would be:
and v = 9.391 m/s is the answer.
780 seconds, or 13 minutes.
In the future, please use proper capitalization. There's a significant difference in the meaning between mV and MV. One of them indicated millivolts while the other indicates megavolts. For this problem, I'll make the following assumptions about the values presented. They are:
Total energy = 1.4x10^11 Joules (J)
Current per flash = 30 Columbs (C)
Potential difference = 30 Mega Volts (MV)
First, let's determine the power discharged by each bolt. That would be the current multiplied by the voltage, so
30 C * 30x10^6 V = 9x10^8 CV = 9x10^8 J
Now that we know how many joules are dissipated per flash, let's determine how flashes are needed.
1.4x10^11 / 9x10^8 = 1.56E+02 = 156
Since each flash takes 5 seconds, that means that it will take about 5 * 156 = 780 seconds which is about 780/60 = 13 minutes.
Answer:
11 kilometers (7 miles) per second, or over 40,000 kilometers per hour (25,000 miles per hour)
Explanation:
F = m₁ a₁ = m₂ a₂
if m₁ = m and m₂ = 2m :
F = ma₁ = 2m a₂ ⇒ a₁ = 2 a₂
since v = at + v₀ with t = 3, v₀ = 0 ⇒ v = 3a:
v₁ = 2 v₂
since p = vm with v₁ = 2v and v₂ = v :
p₁ = v₁m₁ = 2v ⁻ m
p₂ = v₂m₂ = v ⁻ 2m
p₁ = p₂