Answer:
what is the net ionic equation
H2SO4(aq) + Cal2(aq) → CaSO4(s) + 2Hl(aq)?
A. H++ SO42- + Ca2+ + 21 → CaSO4 + H+ +1-
B. 2H+ + S042- + Ca2+ + 21° → Ca2+ + SO42- + 2H+ + 21
C. S042- + Ca2+ → CaSO4,
D. 2H+ + SO42- + Ca2+ + 2I- → CaSO4 + 2H+ + 2I-
cancel the spectator ion that is the ions which does not take place in the reaction
for this case is 2 H^+ and 2 i^-
Here is some information: "Neon is a chemical element with symbol Ne and atomic number 10. It is in group 18 of the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered in 1898 as one of the three residual rare inert elements remaining in dry air, after nitrogen, oxygen, argon and carbon dioxide were removed. Neon was the second of these three rare gases to be discovered, and was immediately recognized as a new element from its bright red emission spectrum. The name neon is derived from the Greek word, νέον, neuter singular form of νέος, meaning new. Neon is chemically inert and forms no uncharged chemical compounds. The compounds of neon include ionic molecules, molecules held together by van der Waals forces and clathrates."
Also: "Neon is rare on Earth, found in the Earth's atmosphere at 1 part in 55,000, or 18.2 ppm by volume (this is about the same as the molecule or mole fraction), or 1 part in 79,000 of air by mass."
Also I only found one if that is okay but here it is: It is the place where it is a city and most people find most neon there.
Answer:
20 mole of oxygen
Explanation:
1 mole of proprane reacts with 5 moles of oxygen so 4 time 5 equals 20
Each correspond to a principal energy level
B. White Dwarf.
<h3>Explanation</h3>
The star would eventually run out of hydrogen fuel in the core. The core would shrink and heats up. As the temperature in the core increases, some of the helium in the core will undergo the triple-alpha process to produce elements such as Be, C, and O. The triple-alpha process will heat the outer layers of the star and blow them away from the core. This process will take a long time. Meanwhile, a planetary nebula will form.
As the outer layers of gas leave the core and cool down, they become no longer visible. The only thing left is the core of the star. Consider the Chandrasekhar Limit:
Chandrasekhar Limit:
.
A star with core mass smaller than the Chandrasekhar Limit will not overcome electron degeneracy and end up as a white dwarf. Most of the outer layer of the star in question here will be blown away already. The core mass of this star will be only a fraction of its
, which is much smaller than the Chandrasekhar Limit.
As the star completes the triple alpha process, its core continues to get smaller. Eventually, atoms will get so close that electrons from two nearby atoms will almost run into each other. By Pauli Exclusion Principle, that's not going to happen. Electron degeneracy will exert a strong outward force on the core. It would balance the inward gravitational pull and prevent the star from collapsing any further. The star will not go any smaller. Still, it will gain in temperature and glow on the blue end of the spectrum. It will end up as a white dwarf.