1.3 atmosphere is 131.722 Kilopascal
The equation NaHco3+hc2h3o2=nac2h3o2+h2co3 is already balanced.
Reaction information:
Nahcolite + Acetic Acid = Sodium Acetate + Carbonic Acid
Reactants:
Nahcolite - NaHCO3 :
Molar Mass, Oxidation State
Acetic Acid - HC2H3O2
Molar Mass, Oxidation State, Ethanoic Acid, Methanecarboxylic Acid, Ch3-Cooh, Acetic Acid; Glacial, etc
(NaHCO3 + HC2H3O2 = NaC2H3O2 + H2CO3)
Answer:
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
Explanation:
Step 1: Data given
Mass of sodium bicarbonate = 2.7 grams
Step 2: The balanced equation
HCl + NaHCO3 ⇔ NaCl + H2O + CO2
Step 3: Calculate moles NaHCO3
moles NaHCO3 =2.7 g / 84 g/mol= 0.032 moles
Step 4: Calculate moles HCl
For 1 mol NaHCO3 we need 1 mol HCl
For 0.032 moles NaHCO3 = 0.032 moles HCl
Step 5: Calculate mass HCl
Mass HCl = moles HCl * molar mass HCl
mass HCl = 0.032 * 36.46 g/mol= 1.17 grams
1.17 grams of HCl can neutralize 2.7 grams sodium bicarbonate
When Na3po4 dissolves in water to produce an electrolytic solution. The osmolarity of a 2. 0 × 10-3 m Na3po4 solution is 0.008osmol/L.
Osmolarity is defined as the number of osmoles of solute particles per unit volume of the solution.
In other words osmolarity is the multiple if molarity
Osmolarity = i× molarity
Here i represents the van't Hoff factor,
⇒ 
3 Moles of
+ 1 mole
= 4
The number of moles of particles of solute produced in solution are actually called osmoles.
As a result, the van't Hoff factor will be equal to
i=4 Moles ions produced (osmoles) 1mole
.dissolved =4
Since we know that,
= 
Osmolarity =
= 
Thus, the Osmolarity of given solution is 0.008 osmol/L.
learn more about Osmolarity:
brainly.com/question/13597129
#SPJ4