100N to the left. Newton's 3rd law action and reaction
Answer:
0.006075Joules
Explanation:
The final kinetic energy of the system is expressed as;
KE = 1/2(m1+m2)v²
m1 and m2 are the masses of the two bodies
v is the final velocity of the bodies after collision
get the final velocity using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
0.12(0.45) + 0/12(0) = (0.12+0.12)v
0.054 = 0.24v
v = 0.054/0.24
v = 0.225m/s
Get the final kinetic energy;
KE = 1/2(m1+m2)v
KE = 1/2(0.12+0.12)(0.225)²
KE = 1/2(0.24)(0.050625)
KE = 0.12*0.050625
KE = 0.006075Joules
Hence the final kinetic energy of the system is 0.006075Joules
Answer:
They developed during the Cambrian time period, which was around 530 million years ago.
Explanation:
Hope this Helps!
A force vector F1 points due
east and has a magnitude of 200 Newtons, A second force F2 is added to F1. The
resultant of the two vectors has a magnitude of 400 newtons and points along
the due east/west line. Find the magnitude and direction of F2. Note that there
are two answers.
<span>The given values are
F1 = 200 N</span>
F2 =?
Total = 400 N
Solution:
F1 + F2 = T
200 N + F2 = 400N
F2 = 400 - 200
F2 = 200
N