they are the lithosphere (land), hydrosphere (water), biosphere (living things), and atmosphere (air).
Sun is the place where fusion continuously occurs.. heat energy is produce plus raditions are by product <span />
Answer:
thinnest soap film is 206.76 nm
Explanation:
Given data
wavelength = 550 nm
index of refraction n = 1.33
to find out
What is the thinnest soap film
solution
we have wavelength λ = 550 nm
that is λ = 550 ×
m
and n = 1.3
we will find the thickness of soap film as given by formula that is
thickness = λ/2n
thickness = 550 ×
/ 2(1.33)
thickness = 206.76 ×
m
thinnest soap film is 206.76 nm
Answer:
The ball has an initial linear kinetic energy and initial rotational kinetic energy which can both be converted into gravitational potential energy. Therefore the hill with friction will let the ball reach higher.
Explanation:
The ball has an initial linear kinetic energy and initial rotational kinetic energy which can both be converted into gravitational potential energy. Therefore the hill with friction will let the ball reach higher.
This is because:
If we consider the ball initially at rest on a frictionless surface and a force is exerted through the centre of mass of the ball, it will slide across the surface with no rotation, and thus, there will only be translational motion.
Now, if there is friction and force is again applied to the stationary ball, the frictional force will act in the opposite direction to the force but at the edge of the ball that rests on the ground. This friction generates a torque on the ball which starts the rotation.
Therefore, static friction is infact necessary for a ball to begin rolling.
Now, from the top of the ball, it will move at a speed 2v, while the centre of mass of the ball will move at a speed v and lastly, the bottom edge of the ball will instantaneously be at rest. So as the edge touching the ground is stationary, it experiences no friction.
So friction is necessary for a ball to start rolling but once the rolling condition has been met the ball experiences no friction.
Answer:
600Hz
Explanation:
In electrical systems of alternating current, the harmonics are, as in acoustics, frequencies multiples of the fundamental working frequency of the system and whose amplitude decreases as the multiple increases. For example, if we have systems fed by the 50 Hz network, harmonics of 100, 150, 200, etc. may appear.
In our case having a fundamental wave of 100Hz, I can have harmonics of 200,300,400, ..., 600Hz