Answer:
The speed of the baseball is approximately 19.855 m/s
Explanation:
From the question, we have;
The frequency of the microwave beam emitted by the speed gun, f = 2.41 × 10¹⁰ Hz
The change in the frequency of the returning wave, Δf = +3190 Hz higher
The Doppler shift for the microwave frequency emitted by the speed gun which is then reflected back to the gun by the moving baseball is given by 2 shifts as follows;


Where;
Δf = The change in frequency observed, known as the beat frequency = 3190 Hz
= The speed of the baseball
c = The speed of light = 3.0 × 10⁸ m/s
f = The frequency of the microwave beam = 2.41 × 10¹⁰ Hz
By plugging in the values, we have;


The speed of the baseball,
≈ 19.855 m/s
Explanation:
Because it's a power to turn the wheels of industry
Steel paper clip because it can be moved by the magnet and it is lighter than the iron nail
Answer:
the ball's velocity was approximately 0.66 m/s
Explanation:
Recall that we can study the motion of the baseball rolling off the table in vertical component and horizontal component separately.
Since the velocity at which the ball was rolling is entirely in the horizontal direction, it doesn't affect the vertical motion that can therefore be studied as a free fall, where only the constant acceleration of gravity is affecting the vertical movement.
Then, considering that the ball, as it falls covers a vertical distance of 0.7 meters to the ground, we can set the equation of motion for this, and estimate the time the ball was in the air:
0.7 = (1/2) g t^2
solve for t:
t^2 = 1.4 / g
t = 0.3779 sec
which we can round to about 0.38 seconds
No we use this time in the horizontal motion, which is only determined by the ball's initial velocity (vi) as it takes off:
horizontal distance covered = vi * t
0.25 = vi * (0.38)
solve for vi:
vi = 0.25/0.38 m/s
vi = 0.65798 m/s
Then the ball's velocity was approximately 0.66 m/s
Answer:
Explanation:
Radius of dee, r = 8 mm = 0.008 m
Electric field, e = 400 V/m
Magnetic field, B = 4.7 x 10^-4 T
mass of electron, m = 9.1 x 10^-31 kg
charge of electron, q = 1.6 x 10^-19 C
(a) Let v is the speed of electrons.


v = 661098.9 = 661099 m/s
(b)

e / m = 1.76 x 10^14 C / kg
(c) Let K be the kinetic energy
K = 0.5 x mv²
K = 0.5 x 9.1 x 10^-31 x 661099 x 661099
K = 1.99 x 10^-19 J
K = 1.24 eV
So, the potential difference is
V = 1.24 V
(d) if the acceleration voltage is doubled
V = 2 x 1.24 = 2.48 V
So, Kinetic energy
K = 2.48 eV
K = 2.48 x 1.6 x 10^-19 = 3.968 x 10^-19 J
Let v is the speed
K = 0.5 x mv²
3.968 x 10^-19 = 0.5 x 9.1 x 10^-31 x v²
v = 933856.5 m/s
Let the new radius is r.


r = 0.0113 m = 1.13 cm