Answer:
Approximately
.
Explanation:
It is given that
and
are connected in a circuit in parallel.
Assume that this circuit is powered with a direct current power supply of voltage
.
Since
and
are connected in parallel, the voltage across the two resistors would both be
. Thus, the current going through the two resistors would be
and
, respectively.
Also because the two resistors are connected in parallel, the total current in this circuit would be the sum of the current in each resistor:
.
In other words, if the voltage across this circuit is
, the total current in this circuit would be
. The (equivalent) resistance
of this circuit would be:
.
Given that
and
:
.
<span>Velocity, you divide distance/time </span>
The initial position of the object was found to be 134.09 m.
<u>Explanation:</u>
As displacement is the measure of difference between the final and initial points. In other words, we can say that displacement can be termed as the change in the position of the object irrespective of the path followed by the object to change the path. So
Displacement = Final position - Initial position.
As the final position is stated as -55.25 meters and the displacement is also stated as -189.34 meters. So the initial position will be
Initial position of the object = Final position-Displacement
Initial position = -55.25 m - (-189.34 m) = -55.25 m + 189.34 m = 134.09 m.
Thus, the initial position for the object having a displacement of -189.34 m is determined as 134.09 m.