Answer:
Caesium (55Cs) has 40 known isotopes, making it, along with barium and mercury, one of the elements with the most isotopes. The atomic masses of these isotopes range from 112 to 151. Only one isotope, 133Cs, is stable. The longest-lived radioisotopes are 135Cs with a half-life of 2.3 million years, ... It constitutes most of the radioactivity still left from the Chernobyl accident ...
Use the Henderson-Hasselbach equation:
pH = pKa + log[base]/[acid]
pH = -log(1.7 x 10^-5) + log(0.590/0.130) = 5.43
Answer: The name given to
is Gallium (III) sulfate.
Explanation: This is an ionic compound because in aqueous solution it dissociates into its respective ions.
Naming of Ionic compounds.
- Name the cation first and then write its oxidation number in roman numerical.
- Then name the anion or polyatomic ions without writing any prefix of the number of atoms present in it.
- The name of the anion should have a suffix '-ide' like for chlorine, the name will be chloride etc..
- For polyatomic ions, the suffix used will be '-ate' like for
the name will be sulfate etc..
Name of the given ionic compound is Gallium (III) Sulfate.
100.133 degree celsius is the boiling point of the solution formed when 15.2 grams of CaCl2 dissolves in 57.0 g of water.
Explanation:
Balanced eaquation for the reaction
CaCl2 + 2H20 ⇒ Ca(OH)2 + HCl
given:
mass of CaCl2 = 15.2 grams
mass of the solution = 57 grams
Kb (molal elevation constant) = 0.512 c/m
i = vont hoff factor is 1 as 1 mole of the substance is given as product.
Molality is calculated as:
molality = 
= 
= 0.26 M
Boiling point is calculated as:
ΔT = i x Kb x M
= 1 x 0.512 x 0.26
= 0.133 degrees
The boiling point of the solution will be:
100 degrees + 0.133 degrees (100 degrees is the boiling point of water)
= 100.133 degree celcius is the boiling point of mixture formed.