Given that a hot air balloon lifts 50 meters vertically into the air and then comes back down.
The displacement is the distance covered in a specific direction.
When the balloon is going up, the displacement is positive. and when the balloon is coming down, the displacement is negative.
The total displacement = 50 - 50 = 0
The distance is a measurement of length between to different points or position.
For distance, there is no need to consider direction. There is no consideration for positive or negative signs
While the distance = 50 + 50 = 100 meters
Therefore, the correct answer is C
That is, The displacement is zero and the distance is 100 meters
Learn more on ; brainly.com/question/24662122
I think this is the answer hope it helps
We know, the ideal gas equation,
P1V1 / T1 = P2V2 / T2
Here, P1 = 760 mm
V1 = 10 m3
T1 = 27 + 273 = 300 K
P2 = 400 mm Hg
T2 = -23 + 273 = 250 K
Substitute their values,
760*10 / 300 = 400 * V2 / 250
25.33 * 250 = 400 * V2
V2 = 6333.333/ 400
V2 = 15.83
In short, Your Answer would be approx. 15.83 m3
Hope this helps!
Answer:
a. 
b.
must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
is the time taken to stop after braking
Explanation:
Given:
- speed of leading car,

- speed of lagging car,

- distance between the cars,

- deceleration of the leading car after braking,

a.
Time taken by the car to stop:

where:
, final velocity after braking
time taken


b.
using the eq. of motion for the given condition:

where:
final velocity of the chasing car after braking = 0
acceleration of the chasing car after braking

must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
time taken by the chasing car to stop:


is the time taken to stop after braking
Answer:
Globular star clusters are located in the great spherical halo.
Explanation:
Hope this helps! :)