Answer:
The terms are
1. Transmit
2. Receive
Explanation:
What is an antenna
According to NASA
An antenna is a metallic structure that captures and/or transmits radio electromagnetic waves. Antennas come in all shapes and sizes from little ones that can be found on the roof to watch TV to really big ones that capture signals from satellites millions of miles away.
How does an antenna work?
Antennas are much more than simple devices connected to every radio. They're the transducers that convert the voltage from a transmitter into a radio signal. And they pick radio signals out of the air and convert them into a voltage for recovery in a receiver
Answer:
500km/h
Explanation:
I don't know what units you need the answer in, but if the units were to stay the same, then that's the answer^.
Answer:
the correct result is r = 3.71 10⁸ m
Explanation:
For this exercise we will use the law of universal gravitation
F = 
We call the masses of the Earth M, the masses of the moon m and the masses of the rocket m ', let's set a reference system in the center of the Earth, the distance from the Earth to the moon is d = 3.84 108 m
rocket force -Earth
F₁ = - \frac{m' M }{r^2}
rocket force - Moon
F₂ = - \frac{m' m }{(d-r)^2}
in the problem ask for what point the force has the relation
2 F₁ = F₂
let's substitute
2
(d-r) ² =
r²
d² - 2rd + r² = \frac{m}{2M} r²
r² (1 -\frac{m}{2M}) - 2rd + d² = 0
Let's solve this quadratic equation to find the distance r, let's call
a = 1 - \frac{m}{2M}
a = 1 -
= 1 - 6.15 10⁻³
a = 0.99385
a r² - 2d r + d² = 0
r =
r = [2d ± 2d
] / 2a
r =
(1 ± √ (1.65 10⁻³)) =
(1 ± 0.04)
r₁ = \frac{d}{a} 1.04
r₂ = \frac{d}{a} 0.96
let's calculate
r₁ =
1.04
r₁ = 401.8 10⁸ m
r₂ = \frac{3.84 10^8}{0.99385} 0.96
r₂ = 3.71 10⁸ m
therefore the correct result is r = 3.71 10⁸ m
Answer:
Probably the more correct version of the story is that Newton, upon observing an apple fall from a tree, began to think along the following lines: The apple is accelerated, since its velocity changes from zero as it is hanging on the tree and moves toward the ground. Thus, by Newton's 2nd Law there must be a force that acts on the apple to cause this acceleration. Let's call this force "gravity", and the associated acceleration the "acceleration due to gravity". Then imagine the apple tree is twice as high. Again, we expect the apple to be accelerated toward the ground, so this suggests that this force that we call gravity reaches to the top of the tallest apple tree.