Answer:
1) It expresses the rate (top speed) at which it can move with time.
2) P = 20 W
3) h = 18 km
Explanation:
1) Power is the rate of transfer of energy.
⇒ Power = 
i.e P = 
Thus a car's engine power is 44000W implies that the engine of the car can propel the car at this rate. This expresses the rate (top speed) at which it can move with time.
2) m = 400g = 0.4 kg
t = 20 s
h = 100m
g = 10 m/
P = 
= 
= 
P = 20 W
3) u = 600 m/s
g = 10 m/
From the third equation of free fall,
=
- 2gh
V is the final velocity, U is the initial velocity, h is the height.
0 =
- 2 x 10 x h
0 = 360000 - 20h
20h = 360000
h = 
= 18000
h = 18 km
The maximum height of the bullet would be 18 km.
Answer:
<h3>C no.</h3>
Explanation:
<h2><em>M</em><em>a</em><em>r</em><em>k</em><em> </em><em>m</em><em>e</em><em> </em><em>m</em><em>e</em><em> </em><em>b</em><em>r</em><em>a</em><em>i</em><em>n</em><em>l</em><em>i</em><em>e</em><em>s</em><em>t</em><em> </em><em>p</em><em>l</em><em>z</em><em> </em><em>i</em><em> </em><em>r</em><em>e</em><em>a</em><em>l</em><em>l</em><em>y</em><em> </em><em>n</em><em>e</em><em>e</em><em>d</em><em> </em><em>i</em><em>t</em><em> </em><em>(⌒▽⌒)</em></h2>
The ice cubes were floating in water because they are less dense than liquid water. When water is frozen, a structure that is crystalline is formed that is held by hydrogen bonding. Due to the orientation of these bonds, the moleules would push far away from each other causing it to have a bigger volume and a lower density.
Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of

