<span>
It makes sense that an inner shell electron would be tougher to remove
than a valence electron because the inner shell electron is closer to
the positive nucleus of the atom. Seeing as an electron caries a
negative charge it would be too attracted to the positive core to leave
readily. Also, the inner shell electrons are constantly repelling
electrons outside of it's energy level (however the reason these
electrons outside innershell energy levels don't simply fly away is the
charge of the positive core overcomes the smaller charges of the
comparably negligible inner shell electrons, but that repulsion is still
there so keep that in mind) </span>
Answer:
47.5 g of water can be formed
Explanation:
This is the reaction:
CH₄ + 2O₂ → CO₂ + 2H₂O
Methane combustion.
In this process 1 mol of methane react with 2 moles of oxygen to produce 2 moles of water and 1 mol of carbon dioxide.
As ratio is 1:2, I will produce the double of moles of water, with the moles of methane I have.
1.320 mol .2 = 2.64 moles
Now, we can convert the moles to mass (mol . molar mass)
2.64 mol . 18g/mol = 47.5 g
Water has h bonding
H-H
Sodium fluoride
I think
Answer:
According to molecular orbital theory, chemical bond occurs as electrons are able to reduce their energy by entering the resulting molecular orbitals.
Chemical bonds are not located among atoms, they are distributed all over the molecule.
Uses test methods to solve the equation of Schrodinger.
You can never do better than nature, however strong your assumption is. Calculations of minimum energy must be done by software.